Properties

Base field 4.4.17725.1
Weight [2, 2, 2, 2]
Level norm 16
Level $[16, 2, 2]$
Label 4.4.17725.1-16.1-g
Dimension 18
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field 4.4.17725.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 12x^{2} + 13x + 41\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[16, 2, 2]$
Label 4.4.17725.1-16.1-g
Dimension 18
Is CM no
Is base change yes
Parent newspace dimension 30

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{18} \) \(\mathstrut -\mathstrut 82x^{16} \) \(\mathstrut +\mathstrut 8x^{15} \) \(\mathstrut +\mathstrut 2719x^{14} \) \(\mathstrut -\mathstrut 400x^{13} \) \(\mathstrut -\mathstrut 46840x^{12} \) \(\mathstrut +\mathstrut 6543x^{11} \) \(\mathstrut +\mathstrut 448861x^{10} \) \(\mathstrut -\mathstrut 32133x^{9} \) \(\mathstrut -\mathstrut 2376546x^{8} \) \(\mathstrut -\mathstrut 105626x^{7} \) \(\mathstrut +\mathstrut 6406238x^{6} \) \(\mathstrut +\mathstrut 1112705x^{5} \) \(\mathstrut -\mathstrut 7091813x^{4} \) \(\mathstrut -\mathstrut 1663416x^{3} \) \(\mathstrut +\mathstrut 2455521x^{2} \) \(\mathstrut +\mathstrut 828062x \) \(\mathstrut +\mathstrut 48904\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
9 $[9, 3, -w^{3} + 3w^{2} + 5w - 15]$ $\phantom{-}e$
9 $[9, 3, -w^{3} + 8w + 8]$ $\phantom{-}e$
16 $[16, 2, 2]$ $-1$
19 $[19, 19, w + 1]$ $...$
19 $[19, 19, -w^{2} + 6]$ $...$
19 $[19, 19, -w^{2} + 2w + 5]$ $...$
19 $[19, 19, -w + 2]$ $...$
25 $[25, 5, 2w^{2} - 2w - 13]$ $...$
29 $[29, 29, -w^{2} + 9]$ $...$
29 $[29, 29, -w^{2} + 2w + 6]$ $...$
29 $[29, 29, w^{2} - 7]$ $...$
29 $[29, 29, -w^{2} + 2w + 8]$ $...$
31 $[31, 31, -2w^{2} + w + 12]$ $...$
31 $[31, 31, 2w^{2} - 3w - 11]$ $...$
41 $[41, 41, -w]$ $...$
41 $[41, 41, -w + 1]$ $...$
49 $[49, 7, w^{3} + 2w^{2} - 10w - 20]$ $...$
49 $[49, 7, w^{3} - 5w^{2} - 3w + 27]$ $...$
61 $[61, 61, 2w^{2} - 3w - 14]$ $...$
61 $[61, 61, 2w^{2} - w - 15]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
16 $[16, 2, 2]$ $1$