Properties

Label 4.4.17609.1-8.2-a
Base field 4.4.17609.1
Weight $[2, 2, 2, 2]$
Level norm $8$
Level $[8, 8, -w^{3} + 6w - 3]$
Dimension $5$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.17609.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 7x^{2} + 10x - 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[8, 8, -w^{3} + 6w - 3]$
Dimension: $5$
CM: no
Base change: no
Newspace dimension: $10$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{5} - 19x^{3} + 10x^{2} + 56x - 16\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}0$
5 $[5, 5, w^{3} + w^{2} - 4w + 1]$ $\phantom{-}e$
7 $[7, 7, -w^{3} + 6w - 2]$ $-\frac{1}{2}e^{2} - \frac{1}{2}e + 5$
8 $[8, 2, w^{3} - 7w + 3]$ $\phantom{-}\frac{1}{4}e^{3} + \frac{1}{4}e^{2} - \frac{5}{2}e + 1$
11 $[11, 11, -w^{3} + 6w - 4]$ $\phantom{-}2$
17 $[17, 17, w^{3} + w^{2} - 6w - 1]$ $\phantom{-}\frac{1}{4}e^{4} - \frac{17}{4}e^{2} + 2e + 7$
17 $[17, 17, -w^{2} - w + 3]$ $\phantom{-}\frac{1}{4}e^{4} + \frac{1}{4}e^{3} - \frac{7}{2}e^{2} + 4$
31 $[31, 31, 2w^{3} + w^{2} - 13w + 3]$ $\phantom{-}2e + 2$
37 $[37, 37, -3w^{3} - w^{2} + 18w - 3]$ $-\frac{1}{4}e^{4} - \frac{3}{4}e^{3} + \frac{7}{2}e^{2} + \frac{11}{2}e - 7$
41 $[41, 41, w^{2} + 2w - 4]$ $-\frac{1}{4}e^{4} - \frac{1}{4}e^{3} + 4e^{2} + \frac{1}{2}e - 5$
47 $[47, 47, 2w^{3} + 2w^{2} - 11w - 2]$ $\phantom{-}\frac{1}{4}e^{4} - \frac{17}{4}e^{2} + e + 9$
47 $[47, 47, -3w^{3} - w^{2} + 19w - 6]$ $\phantom{-}\frac{1}{2}e^{2} + \frac{1}{2}e + 1$
59 $[59, 59, -2w^{3} + 13w - 6]$ $\phantom{-}\frac{1}{2}e^{2} - \frac{3}{2}e - 5$
59 $[59, 59, -w^{3} - w^{2} + 5w + 2]$ $-\frac{1}{2}e^{4} - \frac{1}{2}e^{3} + 8e^{2} - e - 14$
59 $[59, 59, w^{2} + w - 1]$ $-e^{2} - 3e + 10$
59 $[59, 59, w^{2} + 2w - 6]$ $-\frac{1}{4}e^{4} + \frac{1}{2}e^{3} + \frac{19}{4}e^{2} - 8e - 11$
61 $[61, 61, -w^{3} + w^{2} + 8w - 7]$ $-\frac{1}{4}e^{4} - \frac{3}{4}e^{3} + 4e^{2} + 8e - 10$
67 $[67, 67, w^{3} + 2w^{2} - 4w - 4]$ $-\frac{1}{2}e^{3} - \frac{3}{2}e^{2} + 6e + 8$
73 $[73, 73, -2w^{3} - w^{2} + 12w - 4]$ $-\frac{1}{2}e^{3} + \frac{19}{2}e - 1$
81 $[81, 3, -3]$ $-\frac{1}{4}e^{4} + \frac{1}{2}e^{3} + \frac{19}{4}e^{2} - 9e - 9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 1]$ $1$