Properties

Label 4.4.17600.1-4.1-b
Base field 4.4.17600.1
Weight $[2, 2, 2, 2]$
Level norm $4$
Level $[4, 2, -\frac{1}{2}w^{3} + w^{2} + 4w - 8]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.17600.1

Generator \(w\), with minimal polynomial \(x^{4} - 14x^{2} + 44\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[4, 2, -\frac{1}{2}w^{3} + w^{2} + 4w - 8]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, -\frac{1}{2}w^{3} + w^{2} + 4w - 8]$ $\phantom{-}1$
11 $[11, 11, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - 4w + 11]$ $\phantom{-}3$
11 $[11, 11, -\frac{1}{2}w^{2} - w + 2]$ $\phantom{-}3$
11 $[11, 11, -\frac{1}{2}w^{2} + w + 2]$ $-6$
19 $[19, 19, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - 4w + 5]$ $-4$
19 $[19, 19, \frac{1}{2}w^{3} + w^{2} - 4w - 9]$ $\phantom{-}5$
19 $[19, 19, \frac{1}{2}w^{3} - w^{2} - 4w + 9]$ $-4$
19 $[19, 19, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 4w - 5]$ $-4$
25 $[25, 5, \frac{1}{2}w^{2} - 1]$ $-7$
29 $[29, 29, \frac{1}{2}w^{3} - 4w - 1]$ $\phantom{-}3$
29 $[29, 29, -\frac{1}{2}w^{3} + 4w - 1]$ $-6$
31 $[31, 31, -w - 1]$ $-10$
31 $[31, 31, w - 1]$ $-1$
41 $[41, 41, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 4w - 2]$ $-3$
41 $[41, 41, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 4w - 2]$ $-12$
49 $[49, 7, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 7]$ $\phantom{-}8$
49 $[49, 7, \frac{3}{2}w^{3} - \frac{7}{2}w^{2} - 13w + 29]$ $-1$
59 $[59, 59, -\frac{1}{2}w^{3} - \frac{3}{2}w^{2} + 3w + 10]$ $\phantom{-}6$
59 $[59, 59, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - 3w + 10]$ $\phantom{-}6$
61 $[61, 61, \frac{1}{2}w^{2} + w - 6]$ $-7$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, -\frac{1}{2}w^{3} + w^{2} + 4w - 8]$ $-1$