Properties

Label 4.4.17600.1-16.1-e
Base field 4.4.17600.1
Weight $[2, 2, 2, 2]$
Level norm $16$
Level $[16, 2, 2]$
Dimension $4$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.17600.1

Generator \(w\), with minimal polynomial \(x^{4} - 14x^{2} + 44\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[16, 2, 2]$
Dimension: $4$
CM: no
Base change: no
Newspace dimension: $28$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} - 40x^{2} + 80\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, -\frac{1}{2}w^{3} + w^{2} + 4w - 8]$ $\phantom{-}0$
11 $[11, 11, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - 4w + 11]$ $-2$
11 $[11, 11, -\frac{1}{2}w^{2} - w + 2]$ $\phantom{-}e$
11 $[11, 11, -\frac{1}{2}w^{2} + w + 2]$ $-e$
19 $[19, 19, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - 4w + 5]$ $-\frac{1}{8}e^{3} + \frac{9}{2}e$
19 $[19, 19, \frac{1}{2}w^{3} + w^{2} - 4w - 9]$ $-\frac{1}{4}e^{2} + 5$
19 $[19, 19, \frac{1}{2}w^{3} - w^{2} - 4w + 9]$ $-\frac{1}{4}e^{2} + 5$
19 $[19, 19, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 4w - 5]$ $\phantom{-}\frac{1}{8}e^{3} - \frac{9}{2}e$
25 $[25, 5, \frac{1}{2}w^{2} - 1]$ $\phantom{-}\frac{1}{4}e^{2} - 9$
29 $[29, 29, \frac{1}{2}w^{3} - 4w - 1]$ $-\frac{1}{8}e^{3} + \frac{7}{2}e$
29 $[29, 29, -\frac{1}{2}w^{3} + 4w - 1]$ $\phantom{-}\frac{1}{8}e^{3} - \frac{7}{2}e$
31 $[31, 31, -w - 1]$ $-\frac{1}{8}e^{3} + \frac{11}{2}e$
31 $[31, 31, w - 1]$ $\phantom{-}\frac{1}{8}e^{3} - \frac{11}{2}e$
41 $[41, 41, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 4w - 2]$ $\phantom{-}\frac{3}{16}e^{3} - \frac{29}{4}e$
41 $[41, 41, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 4w - 2]$ $-\frac{3}{16}e^{3} + \frac{29}{4}e$
49 $[49, 7, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 7]$ $-\frac{1}{16}e^{3} + \frac{15}{4}e$
49 $[49, 7, \frac{3}{2}w^{3} - \frac{7}{2}w^{2} - 13w + 29]$ $\phantom{-}\frac{1}{16}e^{3} - \frac{15}{4}e$
59 $[59, 59, -\frac{1}{2}w^{3} - \frac{3}{2}w^{2} + 3w + 10]$ $-\frac{1}{4}e^{2} + 5$
59 $[59, 59, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - 3w + 10]$ $-\frac{1}{4}e^{2} + 5$
61 $[61, 61, \frac{1}{2}w^{2} + w - 6]$ $\phantom{-}\frac{1}{8}e^{2} - \frac{19}{2}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, -\frac{1}{2}w^{3} + w^{2} + 4w - 8]$ $-1$