# Properties

 Label 4.4.17428.1-6.1-b Base field 4.4.17428.1 Weight $[2, 2, 2, 2]$ Level norm $6$ Level $[6, 6, w]$ Dimension $3$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.17428.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 6x^{2} + 4x + 6$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[6, 6, w]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $9$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} - x^{2} - 5x + 3$$
Norm Prime Eigenvalue
2 $[2, 2, w - 2]$ $-1$
2 $[2, 2, w + 1]$ $\phantom{-}e$
3 $[3, 3, -w^{2} + w + 3]$ $-1$
27 $[27, 3, -w^{3} - 2w^{2} + 3w + 5]$ $-2e^{2} - 2e + 8$
29 $[29, 29, w^{3} + w^{2} - 2w - 1]$ $-2e$
31 $[31, 31, -w^{2} - w + 1]$ $-e^{2} + 2e + 1$
31 $[31, 31, w^{3} - 2w^{2} - 5w + 7]$ $\phantom{-}e^{2} + 1$
37 $[37, 37, -w^{3} + 3w + 1]$ $\phantom{-}e^{2} - 4e - 5$
41 $[41, 41, -w^{2} + w + 5]$ $\phantom{-}4e^{2} - 2e - 12$
41 $[41, 41, -w^{3} + w^{2} + 4w - 1]$ $\phantom{-}e^{2} + 3$
43 $[43, 43, -2w - 1]$ $\phantom{-}e^{2} + 1$
47 $[47, 47, w^{2} + w - 5]$ $-2e^{2} - 2e + 12$
47 $[47, 47, 2w^{3} - 3w^{2} - 9w + 11]$ $\phantom{-}2e^{2} + 2e - 12$
53 $[53, 53, w^{3} + 2w^{2} - 5w - 5]$ $\phantom{-}e^{2} - 6e - 3$
59 $[59, 59, w^{3} + w^{2} - 4w - 1]$ $\phantom{-}2e^{2} - 6$
59 $[59, 59, w^{3} + w^{2} - 4w - 5]$ $\phantom{-}0$
71 $[71, 71, 2w^{3} - 4w^{2} - 10w + 19]$ $\phantom{-}3e^{2} - 2e - 3$
71 $[71, 71, w^{2} + 3w + 1]$ $-3e^{2} + 9$
73 $[73, 73, w^{3} - 5w + 1]$ $\phantom{-}e^{2} + 7$
89 $[89, 89, -4w^{3} + 7w^{2} + 19w - 29]$ $\phantom{-}3e^{2} - 2e - 9$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w - 2]$ $1$
$3$ $[3, 3, -w^{2} + w + 3]$ $1$