/* This code can be loaded, or copied and pasted, into Magma. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. At the *bottom* of the file, there is code to recreate the Hilbert modular form in Magma, by creating the HMF space and cutting out the corresponding Hecke irreducible subspace. From there, you can ask for more eigenvalues or modify as desired. It is commented out, as this computation may be lengthy. */ P := PolynomialRing(Rationals()); g := P![3, -4, -8, -1, 1]; F := NumberField(g); ZF := Integers(F); NN := ideal; primesArray := [ [3, 3, w], [3, 3, w^3 - 2*w^2 - 6*w + 1], [9, 3, w^3 - 2*w^2 - 5*w + 1], [16, 2, 2], [17, 17, w^3 - w^2 - 8*w - 5], [17, 17, -2*w^3 + 4*w^2 + 11*w - 2], [17, 17, -w^3 + 3*w^2 + 2*w - 2], [17, 17, w^3 - 2*w^2 - 4*w + 1], [25, 5, w^3 - 3*w^2 - 3*w + 1], [25, 5, w^2 - 2*w - 7], [29, 29, w^3 - 2*w^2 - 6*w - 1], [29, 29, w - 2], [53, 53, w^3 - 3*w^2 - 4*w + 4], [53, 53, -w^3 + 3*w^2 + 4*w - 5], [61, 61, -w^3 + 2*w^2 + 7*w - 4], [61, 61, -4*w^3 + 11*w^2 + 14*w - 8], [101, 101, -w^3 + 2*w^2 + 7*w - 1], [103, 103, -w^3 + 3*w^2 + 2*w - 5], [103, 103, -w^3 + w^2 + 8*w + 2], [113, 113, w^3 - 3*w^2 - 3*w + 7], [113, 113, w^2 - 2*w - 1], [127, 127, w^3 - 2*w^2 - 4*w - 2], [127, 127, -2*w^3 + 4*w^2 + 11*w + 1], [131, 131, -3*w^3 + 7*w^2 + 14*w - 8], [131, 131, -w^2 + w + 8], [131, 131, 2*w^3 - 5*w^2 - 9*w + 1], [131, 131, -3*w^3 + 6*w^2 + 16*w + 1], [139, 139, -2*w^3 + 5*w^2 + 9*w - 2], [139, 139, -w^2 + w + 7], [157, 157, -2*w^3 + 5*w^2 + 7*w - 5], [157, 157, -2*w^3 + 3*w^2 + 13*w + 2], [157, 157, -2*w^3 + 5*w^2 + 6*w - 2], [157, 157, -3*w^3 + 5*w^2 + 19*w + 4], [169, 13, -2*w^3 + 4*w^2 + 10*w - 1], [173, 173, 3*w^3 - 8*w^2 - 10*w + 7], [173, 173, 2*w^3 - 2*w^2 - 15*w - 8], [179, 179, -3*w^2 + 6*w + 17], [179, 179, -2*w^3 + 3*w^2 + 12*w + 1], [179, 179, -3*w^3 + 7*w^2 + 13*w - 7], [179, 179, -2*w^3 + 3*w^2 + 14*w + 4], [191, 191, w^3 - 3*w^2 - w + 4], [191, 191, -2*w^3 + 3*w^2 + 14*w + 2], [199, 199, -w^3 + 8*w + 10], [199, 199, 5*w^3 - 15*w^2 - 14*w + 14], [211, 211, -w - 4], [211, 211, -w^3 + 2*w^2 + 6*w - 5], [211, 211, 2*w^3 - 3*w^2 - 12*w - 4], [211, 211, -3*w^3 + 7*w^2 + 13*w - 4], [257, 257, -3*w^3 + 8*w^2 + 10*w - 2], [257, 257, 2*w^3 - 2*w^2 - 16*w - 7], [263, 263, 3*w^3 - 6*w^2 - 17*w + 1], [263, 263, w^3 - 2*w^2 - 3*w - 1], [269, 269, 5*w^3 - 13*w^2 - 19*w + 7], [269, 269, -3*w^3 + 6*w^2 + 18*w - 1], [277, 277, w^3 - 4*w^2 - w + 5], [277, 277, -w^3 + 4*w^2 + w - 11], [283, 283, -w^3 + 5*w^2 - w - 14], [283, 283, 2*w^3 - 7*w^2 - 4*w + 10], [283, 283, -w^3 + w^2 + 9*w + 1], [283, 283, w^2 - 4*w - 5], [311, 311, -w^3 + w^2 + 9*w + 5], [311, 311, w^2 - 4*w - 1], [313, 313, -4*w^3 + 9*w^2 + 19*w - 10], [313, 313, -2*w^2 + 5*w + 11], [337, 337, -3*w^3 + 6*w^2 + 14*w + 2], [337, 337, -4*w^3 + 8*w^2 + 21*w + 1], [347, 347, -2*w^3 + 6*w^2 + 7*w - 10], [347, 347, -w^3 + 4*w^2 + 2*w - 7], [361, 19, -4*w^3 + 11*w^2 + 13*w - 10], [361, 19, -2*w^3 + 5*w^2 + 8*w - 10], [373, 373, 2*w^3 - 5*w^2 - 10*w + 2], [373, 373, -w^3 + 2*w^2 + 8*w - 2], [373, 373, -2*w^3 + 4*w^2 + 13*w - 1], [373, 373, -w^3 + 3*w^2 + 5*w - 8], [389, 389, -w^3 + 4*w^2 + 2*w - 10], [389, 389, -2*w^3 + 6*w^2 + 7*w - 7], [419, 419, -2*w^3 + 5*w^2 + 6*w - 1], [419, 419, -3*w^3 + 5*w^2 + 19*w + 5], [433, 433, w^2 - 4*w - 2], [433, 433, w^3 - w^2 - 9*w - 4], [439, 439, -w^3 + 4*w^2 + w - 2], [439, 439, w^3 - 4*w^2 - w + 14], [443, 443, -2*w^3 + 5*w^2 + 9*w + 1], [443, 443, -w^2 + w + 10], [467, 467, w^3 - w^2 - 8*w + 4], [467, 467, w^3 - 4*w^2 + 2], [491, 491, -4*w^3 + 12*w^2 + 10*w - 11], [491, 491, 2*w^3 - w^2 - 18*w - 11], [491, 491, 3*w^3 - 9*w^2 - 7*w + 11], [491, 491, 2*w^3 - 20*w - 19], [503, 503, w^3 - 3*w^2 - 4*w + 10], [503, 503, -w^3 + w^2 + 10*w - 2], [523, 523, -4*w^3 + 9*w^2 + 22*w - 7], [523, 523, w^3 - 3*w^2 - 7*w + 5], [529, 23, -2*w^3 + 4*w^2 + 10*w + 5], [529, 23, -2*w^3 + 4*w^2 + 10*w - 7], [547, 547, 2*w^3 - w^2 - 18*w - 14], [547, 547, 3*w^3 - 8*w^2 - 14*w + 8], [571, 571, 5*w^3 - 11*w^2 - 25*w + 5], [571, 571, -4*w^3 + 9*w^2 + 19*w - 11], [599, 599, -5*w^3 + 12*w^2 + 20*w - 4], [599, 599, 4*w^3 - 6*w^2 - 25*w - 11], [601, 601, -4*w^3 + 9*w^2 + 20*w - 5], [601, 601, w^3 - 9*w - 14], [601, 601, 3*w^3 - 8*w^2 - 11*w + 2], [601, 601, -2*w^3 + 3*w^2 + 14*w - 1], [641, 641, -2*w^3 + 3*w^2 + 15*w - 5], [641, 641, -4*w^3 + 8*w^2 + 23*w - 2], [647, 647, -3*w^3 + 8*w^2 + 13*w - 11], [647, 647, -w^3 + 4*w^2 + 3*w - 7], [659, 659, 3*w^3 - 7*w^2 - 14*w - 2], [659, 659, w^3 - w^2 - 6*w - 11], [673, 673, -3*w^3 + 7*w^2 + 11*w - 1], [673, 673, -4*w^3 + 7*w^2 + 24*w + 5], [677, 677, 5*w^3 - 12*w^2 - 21*w + 11], [677, 677, -2*w^3 + 6*w^2 + 5*w - 1], [677, 677, -2*w^3 + 6*w^2 + 8*w - 7], [677, 677, 2*w^3 - 6*w^2 - 8*w + 11], [719, 719, -2*w^3 + 6*w^2 + 10*w - 7], [719, 719, -4*w^3 + 10*w^2 + 20*w - 13], [727, 727, 3*w^3 - 10*w^2 - 8*w + 10], [727, 727, 3*w^3 - 8*w^2 - 13*w + 10], [727, 727, 2*w^3 - 8*w^2 - 3*w + 23], [727, 727, -w^3 + 4*w^2 + 3*w - 8], [751, 751, -7*w^3 + 18*w^2 + 25*w - 7], [751, 751, w^3 - 7*w^2 + 5*w + 26], [757, 757, -4*w^3 + 9*w^2 + 18*w - 7], [757, 757, -3*w^3 + 5*w^2 + 17*w + 1], [797, 797, 2*w^2 - 4*w - 5], [797, 797, 2*w^3 - 6*w^2 - 6*w + 11], [823, 823, -2*w^3 + 2*w^2 + 15*w + 14], [823, 823, -3*w^3 + 8*w^2 + 10*w - 1], [829, 829, -6*w^3 + 16*w^2 + 22*w - 7], [829, 829, 5*w^3 - 13*w^2 - 20*w + 8], [829, 829, -w^3 + 7*w + 4], [829, 829, -5*w^3 + 12*w^2 + 23*w - 14], [841, 29, -3*w^3 + 6*w^2 + 15*w - 2], [859, 859, -4*w^3 + 7*w^2 + 24*w - 1], [859, 859, -5*w^3 + 15*w^2 + 14*w - 13], [881, 881, 3*w^3 - 7*w^2 - 16*w + 4], [881, 881, -w^3 + 3*w^2 + 6*w - 7], [883, 883, -2*w^3 + 3*w^2 + 12*w + 10], [883, 883, -3*w^3 + 7*w^2 + 13*w + 2], [887, 887, 4*w^3 - 11*w^2 - 11*w + 11], [887, 887, 2*w^3 - 7*w^2 - 3*w + 7], [887, 887, 4*w^3 - 5*w^2 - 29*w - 10], [887, 887, 3*w^2 - 7*w - 16], [907, 907, -w^3 + 3*w^2 + 8*w - 5], [907, 907, -5*w^3 + 11*w^2 + 28*w - 8], [911, 911, -4*w^3 + 10*w^2 + 18*w - 17], [911, 911, 2*w^2 - 2*w - 1], [919, 919, 4*w^3 - 7*w^2 - 25*w - 4], [919, 919, 2*w^3 - 5*w^2 - 5*w + 1], [937, 937, -w^3 + 3*w^2 + w - 8], [937, 937, -2*w^3 + 3*w^2 + 14*w - 2], [953, 953, -2*w^3 + w^2 + 17*w + 19], [953, 953, 4*w^3 - 11*w^2 - 13*w + 4], [961, 31, 2*w^3 - 3*w^2 - 11*w - 8], [961, 31, w^3 - 4*w^2 + 2*w + 11], [971, 971, 2*w^2 - 5*w - 4], [971, 971, -w^3 + 4*w^2 - 11], [991, 991, -2*w^3 + 6*w^2 + 9*w - 8], [991, 991, -2*w^3 + 3*w^2 + 13*w - 1], [991, 991, 3*w^3 - 8*w^2 - 14*w + 11], [991, 991, -2*w^3 + 5*w^2 + 7*w - 8], [997, 997, -2*w^3 + 5*w^2 + 6*w + 1], [997, 997, -3*w^3 + 5*w^2 + 19*w + 7], [997, 997, -6*w^3 + 12*w^2 + 33*w - 4], [997, 997, 4*w^3 - 11*w^2 - 15*w + 11]]; primes := [ideal : I in primesArray]; heckePol := x^4 - 2*x^3 - 9*x^2 + 10*x - 1; K := NumberField(heckePol); heckeEigenvaluesArray := [2/5*e^3 - 3/5*e^2 - 17/5*e + 9/5, -2/5*e^3 + 3/5*e^2 + 17/5*e - 9/5, 2/5*e^3 - 3/5*e^2 - 22/5*e + 9/5, 1, -e + 1, -3/5*e^3 + 7/5*e^2 + 28/5*e - 36/5, 4/5*e^3 - 6/5*e^2 - 39/5*e + 23/5, -1/5*e^3 - 1/5*e^2 + 16/5*e - 2/5, 2/5*e^3 - 3/5*e^2 - 12/5*e + 19/5, -6/5*e^3 + 9/5*e^2 + 56/5*e - 17/5, 9/5*e^3 - 16/5*e^2 - 79/5*e + 38/5, -e^3 + 2*e^2 + 7*e - 10, e^3 - 3*e^2 - 8*e + 15, -1/5*e^3 + 9/5*e^2 - 4/5*e - 27/5, -11/5*e^3 + 19/5*e^2 + 106/5*e - 77/5, -1/5*e^3 - 1/5*e^2 + 26/5*e - 7/5, -6, -7/5*e^3 + 13/5*e^2 + 57/5*e - 54/5, 7/5*e^3 - 13/5*e^2 - 57/5*e + 34/5, 11/5*e^3 - 9/5*e^2 - 96/5*e - 8/5, -3*e^3 + 3*e^2 + 28*e - 10, -e^3 + 3*e^2 + 11*e - 10, -11/5*e^3 + 9/5*e^2 + 121/5*e - 2/5, 3*e^3 - 3*e^2 - 27*e + 6, -16/5*e^3 + 29/5*e^2 + 161/5*e - 97/5, -8/5*e^3 + 7/5*e^2 + 103/5*e - 11/5, -3*e^3 + 3*e^2 + 27*e - 6, -3/5*e^3 - 3/5*e^2 + 33/5*e + 4/5, 3/5*e^3 + 3/5*e^2 - 33/5*e - 44/5, -8/5*e^3 + 12/5*e^2 + 103/5*e - 66/5, -4*e^3 + 6*e^2 + 41*e - 24, -3/5*e^3 + 2/5*e^2 + 23/5*e - 6/5, 7/5*e^3 - 8/5*e^2 - 67/5*e + 14/5, 8/5*e^3 - 12/5*e^2 - 88/5*e + 36/5, 19/5*e^3 - 31/5*e^2 - 204/5*e + 143/5, 17/5*e^3 - 23/5*e^2 - 192/5*e + 109/5, e^3 - 4*e^2 - 6*e + 17, 17/5*e^3 - 13/5*e^2 - 187/5*e + 44/5, 7/5*e^3 - 23/5*e^2 - 77/5*e + 124/5, -e^3 + 4*e^2 + 6*e - 17, -8/5*e^3 + 17/5*e^2 + 93/5*e - 91/5, -16/5*e^3 + 19/5*e^2 + 171/5*e - 77/5, -2/5*e^3 - 2/5*e^2 + 22/5*e + 16/5, 2/5*e^3 + 2/5*e^2 - 22/5*e - 16/5, 2*e^3 - 4*e^2 - 20*e + 30, 6/5*e^3 - 4/5*e^2 - 76/5*e + 82/5, 2/5*e^3 + 12/5*e^2 - 52/5*e - 106/5, 14/5*e^3 - 36/5*e^2 - 124/5*e + 98/5, -6/5*e^3 + 9/5*e^2 + 76/5*e - 82/5, -14/5*e^3 + 21/5*e^2 + 144/5*e - 118/5, -3/5*e^3 + 7/5*e^2 + 13/5*e - 66/5, 11/5*e^3 - 19/5*e^2 - 101/5*e + 22/5, -8/5*e^3 + 2/5*e^2 + 83/5*e - 66/5, 4/5*e^3 + 4/5*e^2 - 39/5*e - 112/5, -13/5*e^3 + 12/5*e^2 + 143/5*e - 1/5, -7/5*e^3 + 18/5*e^2 + 77/5*e - 49/5, 28/5*e^3 - 47/5*e^2 - 293/5*e + 151/5, 4*e^3 - 5*e^2 - 47*e + 13, 8/5*e^3 - 22/5*e^2 - 58/5*e + 86/5, -8/5*e^3 + 22/5*e^2 + 58/5*e - 86/5, 2*e^3 - 5*e^2 - 21*e + 21, 14/5*e^3 - 11/5*e^2 - 159/5*e + 23/5, 7/5*e^3 - 3/5*e^2 - 72/5*e - 76/5, -3/5*e^3 - 3/5*e^2 + 28/5*e - 46/5, -3*e^3 + 5*e^2 + 26*e - 14, 11/5*e^3 - 19/5*e^2 - 86/5*e + 72/5, -21/5*e^3 + 24/5*e^2 + 186/5*e - 117/5, 21/5*e^3 - 24/5*e^2 - 186/5*e - 3/5, 7/5*e^3 - 33/5*e^2 - 32/5*e + 144/5, -11/5*e^3 + 39/5*e^2 + 76/5*e - 162/5, 18/5*e^3 - 12/5*e^2 - 198/5*e + 66/5, -2*e^3 + 4*e^2 + 22*e - 26, -14/5*e^3 + 16/5*e^2 + 154/5*e - 98/5, 6/5*e^3 - 24/5*e^2 - 66/5*e + 162/5, -14/5*e^3 + 36/5*e^2 + 99/5*e - 88/5, 18/5*e^3 - 42/5*e^2 - 143/5*e + 206/5, -14/5*e^3 + 1/5*e^2 + 129/5*e + 77/5, 22/5*e^3 - 13/5*e^2 - 217/5*e + 39/5, -4/5*e^3 + 11/5*e^2 + 34/5*e - 108/5, -e^2 + 2*e - 8, 8/5*e^3 - 12/5*e^2 - 88/5*e + 56/5, 8/5*e^3 - 12/5*e^2 - 88/5*e + 56/5, 26/5*e^3 - 44/5*e^2 - 216/5*e + 202/5, -26/5*e^3 + 44/5*e^2 + 216/5*e - 82/5, -21/5*e^3 + 44/5*e^2 + 206/5*e - 227/5, -11/5*e^3 + 4/5*e^2 + 146/5*e - 57/5, -2/5*e^3 - 2/5*e^2 + 2/5*e + 56/5, 21/5*e^3 - 14/5*e^2 - 196/5*e + 7/5, -21/5*e^3 + 14/5*e^2 + 196/5*e - 7/5, 18/5*e^3 - 22/5*e^2 - 178/5*e + 96/5, -23/5*e^3 + 22/5*e^2 + 238/5*e - 101/5, -1/5*e^3 + 14/5*e^2 + 26/5*e - 127/5, 11/5*e^3 - 39/5*e^2 - 61/5*e + 192/5, -19/5*e^3 + 51/5*e^2 + 149/5*e - 168/5, 14/5*e^3 - 21/5*e^2 - 154/5*e + 18/5, -22/5*e^3 + 33/5*e^2 + 242/5*e - 144/5, -7*e^3 + 8*e^2 + 70*e - 17, 3/5*e^3 + 8/5*e^2 + 2/5*e - 39/5, -21/5*e^3 + 19/5*e^2 + 181/5*e + 38/5, 29/5*e^3 - 31/5*e^2 - 269/5*e + 138/5, -18/5*e^3 + 37/5*e^2 + 173/5*e - 101/5, -6/5*e^3 - 1/5*e^2 + 91/5*e + 53/5, -2*e^3 + 4*e^2 + 15*e - 25, -4/5*e^3 + 6/5*e^2 - 1/5*e - 13/5, 32/5*e^3 - 48/5*e^2 - 307/5*e + 149/5, 14/5*e^3 - 26/5*e^2 - 119/5*e + 33/5, 24/5*e^3 - 36/5*e^2 - 224/5*e + 38/5, -8/5*e^3 + 12/5*e^2 + 48/5*e - 106/5, -4*e^3 + 4*e^2 + 48*e - 20, -28/5*e^3 + 52/5*e^2 + 288/5*e - 236/5, 1/5*e^3 - 14/5*e^2 + 4/5*e + 127/5, -1/5*e^3 + 14/5*e^2 - 4/5*e - 7/5, 6/5*e^3 - 24/5*e^2 + 9/5*e + 87/5, -42/5*e^3 + 78/5*e^2 + 387/5*e - 279/5, -3*e^3 + 5*e^2 + 34*e - 25, -21/5*e^3 + 29/5*e^2 + 226/5*e - 127/5, 13/5*e^3 - 32/5*e^2 - 73/5*e + 101/5, -33/5*e^3 + 62/5*e^2 + 293/5*e - 231/5, 13/5*e^3 - 32/5*e^2 - 108/5*e + 11/5, -e^3 + 4*e^2 + 4*e - 39, 52/5*e^3 - 83/5*e^2 - 497/5*e + 229/5, 2*e^2 - 6*e + 6, -4/5*e^3 + 11/5*e^2 - 31/5*e - 73/5, 16/5*e^3 - 34/5*e^2 - 146/5*e + 202/5, 7*e^3 - 14*e^2 - 58*e + 51, -27/5*e^3 + 58/5*e^2 + 202/5*e - 199/5, -49/5*e^3 + 71/5*e^2 + 494/5*e - 223/5, -11/5*e^3 + 19/5*e^2 + 166/5*e - 77/5, 3*e^3 - 2*e^2 - 31*e - 14, -3/5*e^3 - 8/5*e^2 + 23/5*e - 26/5, 17/5*e^3 - 48/5*e^2 - 112/5*e + 189/5, -5*e^3 + 12*e^2 + 40*e - 45, -17/5*e^3 + 8/5*e^2 + 157/5*e + 91/5, 21/5*e^3 - 14/5*e^2 - 201/5*e + 87/5, -7/5*e^3 + 8/5*e^2 + 37/5*e + 21/5, 27/5*e^3 - 38/5*e^2 - 257/5*e + 149/5, -12/5*e^3 + 18/5*e^2 + 132/5*e - 54/5, -28/5*e^3 + 57/5*e^2 + 273/5*e - 161/5, -12/5*e^3 + 3/5*e^2 + 167/5*e + 61/5, -2*e^3 + e^2 + 14*e + 21, 6*e^3 - 7*e^2 - 58*e + 37, 2*e^3 + e^2 - 19*e - 7, -18/5*e^3 + 7/5*e^2 + 183/5*e + 39/5, 1/5*e^3 + 21/5*e^2 - 11/5*e - 138/5, 2/5*e^3 - 23/5*e^2 + 43/5*e + 99/5, -17/5*e^3 + 3/5*e^2 + 187/5*e + 6/5, -34/5*e^3 + 71/5*e^2 + 309/5*e - 263/5, -23/5*e^3 + 42/5*e^2 + 208/5*e - 161/5, 7/5*e^3 - 18/5*e^2 - 32/5*e + 49/5, -7/5*e^3 + 3/5*e^2 + 107/5*e + 36/5, -5*e^3 + 9*e^2 + 49*e - 24, 6/5*e^3 - 34/5*e^2 - 46/5*e + 52/5, 2*e^3 + 2*e^2 - 26*e - 36, 4*e^3 - 5*e^2 - 50*e + 25, 8*e^3 - 13*e^2 - 82*e + 53, -4/5*e^3 + 1/5*e^2 - 36/5*e + 92/5, 64/5*e^3 - 91/5*e^2 - 624/5*e + 348/5, -26/5*e^3 + 24/5*e^2 + 271/5*e - 77/5, -2/5*e^3 + 18/5*e^2 + 37/5*e - 119/5, -24/5*e^3 + 41/5*e^2 + 269/5*e - 173/5, -32/5*e^3 + 43/5*e^2 + 347/5*e - 159/5, 18/5*e^3 - 57/5*e^2 - 153/5*e + 241/5, 9/5*e^3 + 9/5*e^2 - 129/5*e - 32/5, 6/5*e^3 + 21/5*e^2 - 111/5*e - 113/5, 3*e^3 - 9*e^2 - 27*e + 44, -7/5*e^3 + 13/5*e^2 + 42/5*e - 49/5, 19/5*e^3 - 31/5*e^2 - 174/5*e + 93/5, -17/5*e^3 + 8/5*e^2 + 207/5*e + 61/5, -19/5*e^3 + 46/5*e^2 + 189/5*e - 123/5]; heckeEigenvalues := AssociativeArray(); for i := 1 to #heckeEigenvaluesArray do heckeEigenvalues[primes[i]] := heckeEigenvaluesArray[i]; end for; ALEigenvalues := AssociativeArray(); ALEigenvalues[ideal] := -1; // EXAMPLE: // pp := Factorization(2*ZF)[1][1]; // heckeEigenvalues[pp]; print "To reconstruct the Hilbert newform f, type f, iso := Explode(make_newform());"; function make_newform(); M := HilbertCuspForms(F, NN); S := NewSubspace(M); // SetVerbose("ModFrmHil", 1); NFD := NewformDecomposition(S); newforms := [* Eigenform(U) : U in NFD *]; if #newforms eq 0 then; print "No Hilbert newforms at this level"; return 0; end if; print "Testing ", #newforms, " possible newforms"; newforms := [* f: f in newforms | IsIsomorphic(BaseField(f), K) *]; print #newforms, " newforms have the correct Hecke field"; if #newforms eq 0 then; print "No Hilbert newform found with the correct Hecke field"; return 0; end if; autos := Automorphisms(K); xnewforms := [* *]; for f in newforms do; if K eq RationalField() then; Append(~xnewforms, [* f, autos[1] *]); else; flag, iso := IsIsomorphic(K,BaseField(f)); for a in autos do; Append(~xnewforms, [* f, a*iso *]); end for; end if; end for; newforms := xnewforms; for P in primes do; xnewforms := [* *]; for f_iso in newforms do; f, iso := Explode(f_iso); if HeckeEigenvalue(f,P) eq iso(heckeEigenvalues[P]) then; Append(~xnewforms, f_iso); end if; end for; newforms := xnewforms; if #newforms eq 0 then; print "No Hilbert newform found which matches the Hecke eigenvalues"; return 0; else if #newforms eq 1 then; print "success: unique match"; return newforms[1]; end if; end if; end for; print #newforms, "Hilbert newforms found which match the Hecke eigenvalues"; return newforms[1]; end function;