Properties

Label 4.4.17069.1-1.1-a
Base field 4.4.17069.1
Weight $[2, 2, 2, 2]$
Level norm $1$
Level $[1, 1, 1]$
Dimension $2$
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field 4.4.17069.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 8x^{2} - 4x + 3\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[1, 1, 1]$
Dimension: $2$
CM: no
Base change: yes
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} + 3x + 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}e$
3 $[3, 3, w^{3} - 2w^{2} - 6w + 1]$ $\phantom{-}e$
9 $[9, 3, w^{3} - 2w^{2} - 5w + 1]$ $\phantom{-}e + 6$
16 $[16, 2, 2]$ $-3e$
17 $[17, 17, w^{3} - w^{2} - 8w - 5]$ $-2e - 3$
17 $[17, 17, -2w^{3} + 4w^{2} + 11w - 2]$ $\phantom{-}3e + 6$
17 $[17, 17, -w^{3} + 3w^{2} + 2w - 2]$ $-2e - 3$
17 $[17, 17, w^{3} - 2w^{2} - 4w + 1]$ $\phantom{-}3e + 6$
25 $[25, 5, w^{3} - 3w^{2} - 3w + 1]$ $-3$
25 $[25, 5, w^{2} - 2w - 7]$ $-3$
29 $[29, 29, w^{3} - 2w^{2} - 6w - 1]$ $\phantom{-}6e + 6$
29 $[29, 29, w - 2]$ $\phantom{-}6e + 6$
53 $[53, 53, w^{3} - 3w^{2} - 4w + 4]$ $-6e - 9$
53 $[53, 53, -w^{3} + 3w^{2} + 4w - 5]$ $-6e - 9$
61 $[61, 61, -w^{3} + 2w^{2} + 7w - 4]$ $\phantom{-}6e + 9$
61 $[61, 61, -4w^{3} + 11w^{2} + 14w - 8]$ $\phantom{-}6e + 9$
101 $[101, 101, -w^{3} + 2w^{2} + 7w - 1]$ $\phantom{-}8e + 12$
103 $[103, 103, -w^{3} + 3w^{2} + 2w - 5]$ $-3e$
103 $[103, 103, -w^{3} + w^{2} + 8w + 2]$ $-3e$
113 $[113, 113, w^{3} - 3w^{2} - 3w + 7]$ $-9e - 24$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).