Properties

Base field 4.4.16997.1
Weight [2, 2, 2, 2]
Level norm 25
Level $[25, 5, -w^{3} + w^{2} + 3w - 1]$
Label 4.4.16997.1-25.2-b
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.16997.1

Generator \(w\), with minimal polynomial \(x^{4} - 6x^{2} - x + 5\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[25, 5, -w^{3} + w^{2} + 3w - 1]$
Label 4.4.16997.1-25.2-b
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 51

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, w]$ $\phantom{-}2$
5 $[5, 5, -w^{2} + w + 2]$ $-2$
7 $[7, 7, -w^{2} + 2]$ $\phantom{-}0$
13 $[13, 13, -w^{2} + 3]$ $\phantom{-}6$
13 $[13, 13, w^{2} - w - 4]$ $\phantom{-}0$
16 $[16, 2, 2]$ $-5$
19 $[19, 19, -w^{2} + w + 1]$ $\phantom{-}6$
23 $[23, 23, -w^{3} + 4w + 2]$ $\phantom{-}0$
25 $[25, 5, -w^{3} + w^{2} + 3w - 1]$ $\phantom{-}1$
29 $[29, 29, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}6$
29 $[29, 29, -w + 3]$ $-4$
31 $[31, 31, -w^{3} + w^{2} + 5w - 2]$ $-6$
37 $[37, 37, w^{3} - 4w - 1]$ $-4$
37 $[37, 37, w^{3} - 3w + 1]$ $-2$
53 $[53, 53, -w^{3} + 2w^{2} + 4w - 6]$ $\phantom{-}12$
59 $[59, 59, w^{2} + w - 4]$ $\phantom{-}0$
61 $[61, 61, -2w^{2} + w + 8]$ $-14$
73 $[73, 73, -w^{3} + 5w - 1]$ $-6$
79 $[79, 79, 2w^{2} + w - 6]$ $\phantom{-}16$
79 $[79, 79, 2w^{3} - w^{2} - 9w + 3]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
25 $[25, 5, -w^{3} + w^{2} + 3w - 1]$ $-1$