# Properties

 Base field 4.4.16997.1 Weight [2, 2, 2, 2] Level norm 25 Level $[25, 5, -w^{3} + 4w]$ Label 4.4.16997.1-25.1-g Dimension 4 CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.16997.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - x + 5$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[25, 5, -w^{3} + 4w]$ Label 4.4.16997.1-25.1-g Dimension 4 Is CM no Is base change no Parent newspace dimension 39

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{4} - x^{3} - 11x^{2} - 3x + 2$$
Norm Prime Eigenvalue
5 $[5, 5, w]$ $\phantom{-}1$
5 $[5, 5, -w^{2} + w + 2]$ $-1$
7 $[7, 7, -w^{2} + 2]$ $\phantom{-}e$
13 $[13, 13, -w^{2} + 3]$ $\phantom{-}e - 3$
13 $[13, 13, w^{2} - w - 4]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{13}{2}e - 5$
16 $[16, 2, 2]$ $-\frac{1}{2}e^{3} + e^{2} + \frac{9}{2}e$
19 $[19, 19, -w^{2} + w + 1]$ $-\frac{1}{2}e^{3} + e^{2} + \frac{5}{2}e - 1$
23 $[23, 23, -w^{3} + 4w + 2]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{17}{2}e - 4$
25 $[25, 5, -w^{3} + w^{2} + 3w - 1]$ $-e^{3} + e^{2} + 10e + 1$
29 $[29, 29, w^{3} - w^{2} - 4w + 1]$ $-e^{3} + e^{2} + 9e + 4$
29 $[29, 29, -w + 3]$ $\phantom{-}\frac{1}{2}e^{3} - e^{2} - \frac{7}{2}e$
31 $[31, 31, -w^{3} + w^{2} + 5w - 2]$ $\phantom{-}e - 3$
37 $[37, 37, w^{3} - 4w - 1]$ $-\frac{1}{2}e^{3} + \frac{15}{2}e + 3$
37 $[37, 37, w^{3} - 3w + 1]$ $-e^{2} + e$
53 $[53, 53, -w^{3} + 2w^{2} + 4w - 6]$ $\phantom{-}e^{3} - e^{2} - 9e + 2$
59 $[59, 59, w^{2} + w - 4]$ $\phantom{-}\frac{3}{2}e^{3} - 3e^{2} - \frac{27}{2}e + 3$
61 $[61, 61, -2w^{2} + w + 8]$ $-e^{3} + e^{2} + 8e + 6$
73 $[73, 73, -w^{3} + 5w - 1]$ $\phantom{-}\frac{1}{2}e^{3} - 2e^{2} - \frac{5}{2}e + 6$
79 $[79, 79, 2w^{2} + w - 6]$ $\phantom{-}\frac{1}{2}e^{3} + e^{2} - \frac{13}{2}e - 11$
79 $[79, 79, 2w^{3} - w^{2} - 9w + 3]$ $\phantom{-}e^{2} - 3e - 8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w]$ $-1$
5 $[5, 5, -w^{2} + w + 2]$ $1$