Properties

 Base field 4.4.16997.1 Weight [2, 2, 2, 2] Level norm 25 Level $[25, 5, -w^{3} + 4w]$ Label 4.4.16997.1-25.1-f Dimension 2 CM no Base change no

Related objects

• L-function not available

Base field 4.4.16997.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - x + 5$$; narrow class number $$1$$ and class number $$1$$.

Form

 Weight [2, 2, 2, 2] Level $[25, 5, -w^{3} + 4w]$ Label 4.4.16997.1-25.1-f Dimension 2 Is CM no Is base change no Parent newspace dimension 39

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2} + 4x - 2$$
Norm Prime Eigenvalue
5 $[5, 5, w]$ $\phantom{-}1$
5 $[5, 5, -w^{2} + w + 2]$ $-1$
7 $[7, 7, -w^{2} + 2]$ $\phantom{-}e$
13 $[13, 13, -w^{2} + 3]$ $\phantom{-}e$
13 $[13, 13, w^{2} - w - 4]$ $\phantom{-}e + 6$
16 $[16, 2, 2]$ $-e - 3$
19 $[19, 19, -w^{2} + w + 1]$ $\phantom{-}3e + 5$
23 $[23, 23, -w^{3} + 4w + 2]$ $-e - 2$
25 $[25, 5, -w^{3} + w^{2} + 3w - 1]$ $\phantom{-}8$
29 $[29, 29, w^{3} - w^{2} - 4w + 1]$ $-e - 7$
29 $[29, 29, -w + 3]$ $-e - 6$
31 $[31, 31, -w^{3} + w^{2} + 5w - 2]$ $-2e - 3$
37 $[37, 37, w^{3} - 4w - 1]$ $-5$
37 $[37, 37, w^{3} - 3w + 1]$ $-e - 2$
53 $[53, 53, -w^{3} + 2w^{2} + 4w - 6]$ $-2e - 8$
59 $[59, 59, w^{2} + w - 4]$ $-3e - 9$
61 $[61, 61, -2w^{2} + w + 8]$ $-2e - 11$
73 $[73, 73, -w^{3} + 5w - 1]$ $-2e - 5$
79 $[79, 79, 2w^{2} + w - 6]$ $-4$
79 $[79, 79, 2w^{3} - w^{2} - 9w + 3]$ $-e - 15$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w]$ $-1$
5 $[5, 5, -w^{2} + w + 2]$ $1$