Properties

Base field 4.4.16997.1
Weight [2, 2, 2, 2]
Level norm 25
Level $[25, 5, -w^{3} + 4w]$
Label 4.4.16997.1-25.1-f
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.16997.1

Generator \(w\), with minimal polynomial \(x^{4} - 6x^{2} - x + 5\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[25, 5, -w^{3} + 4w]$
Label 4.4.16997.1-25.1-f
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 39

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} + 4x - 2\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w]$ $\phantom{-}1$
5 $[5, 5, -w^{2} + w + 2]$ $-1$
7 $[7, 7, -w^{2} + 2]$ $\phantom{-}e$
13 $[13, 13, -w^{2} + 3]$ $\phantom{-}e$
13 $[13, 13, w^{2} - w - 4]$ $\phantom{-}e + 6$
16 $[16, 2, 2]$ $-e - 3$
19 $[19, 19, -w^{2} + w + 1]$ $\phantom{-}3e + 5$
23 $[23, 23, -w^{3} + 4w + 2]$ $-e - 2$
25 $[25, 5, -w^{3} + w^{2} + 3w - 1]$ $\phantom{-}8$
29 $[29, 29, w^{3} - w^{2} - 4w + 1]$ $-e - 7$
29 $[29, 29, -w + 3]$ $-e - 6$
31 $[31, 31, -w^{3} + w^{2} + 5w - 2]$ $-2e - 3$
37 $[37, 37, w^{3} - 4w - 1]$ $-5$
37 $[37, 37, w^{3} - 3w + 1]$ $-e - 2$
53 $[53, 53, -w^{3} + 2w^{2} + 4w - 6]$ $-2e - 8$
59 $[59, 59, w^{2} + w - 4]$ $-3e - 9$
61 $[61, 61, -2w^{2} + w + 8]$ $-2e - 11$
73 $[73, 73, -w^{3} + 5w - 1]$ $-2e - 5$
79 $[79, 79, 2w^{2} + w - 6]$ $-4$
79 $[79, 79, 2w^{3} - w^{2} - 9w + 3]$ $-e - 15$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w]$ $-1$
5 $[5, 5, -w^{2} + w + 2]$ $1$