# Properties

 Label 4.4.16997.1-16.1-a Base field 4.4.16997.1 Weight $[2, 2, 2, 2]$ Level norm $16$ Level $[16, 2, 2]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.16997.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - x + 5$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[16, 2, 2]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $30$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - x - 1$$
Norm Prime Eigenvalue
5 $[5, 5, w]$ $\phantom{-}e$
5 $[5, 5, -w^{2} + w + 2]$ $\phantom{-}e - 1$
7 $[7, 7, -w^{2} + 2]$ $\phantom{-}2e - 1$
13 $[13, 13, -w^{2} + 3]$ $-e - 4$
13 $[13, 13, w^{2} - w - 4]$ $-5e + 3$
16 $[16, 2, 2]$ $\phantom{-}1$
19 $[19, 19, -w^{2} + w + 1]$ $\phantom{-}4e - 1$
23 $[23, 23, -w^{3} + 4w + 2]$ $-6e + 4$
25 $[25, 5, -w^{3} + w^{2} + 3w - 1]$ $-6e + 4$
29 $[29, 29, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}2e + 5$
29 $[29, 29, -w + 3]$ $\phantom{-}4e - 3$
31 $[31, 31, -w^{3} + w^{2} + 5w - 2]$ $-3e + 4$
37 $[37, 37, w^{3} - 4w - 1]$ $\phantom{-}7e - 3$
37 $[37, 37, w^{3} - 3w + 1]$ $-e + 1$
53 $[53, 53, -w^{3} + 2w^{2} + 4w - 6]$ $\phantom{-}e + 1$
59 $[59, 59, w^{2} + w - 4]$ $-7$
61 $[61, 61, -2w^{2} + w + 8]$ $-5e - 5$
73 $[73, 73, -w^{3} + 5w - 1]$ $-4e - 4$
79 $[79, 79, 2w^{2} + w - 6]$ $-7e + 9$
79 $[79, 79, 2w^{3} - w^{2} - 9w + 3]$ $\phantom{-}e + 7$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$16$ $[16, 2, 2]$ $-1$