# Properties

 Label 4.4.16997.1-13.1-a Base field 4.4.16997.1 Weight $[2, 2, 2, 2]$ Level norm $13$ Level $[13, 13, -w^{2} + 3]$ Dimension $4$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.16997.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - x + 5$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[13, 13, -w^{2} + 3]$ Dimension: $4$ CM: no Base change: no Newspace dimension: $26$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} - 7x^{3} + 9x^{2} + 23x - 43$$
Norm Prime Eigenvalue
5 $[5, 5, w]$ $-e^{3} + 4e^{2} + 4e - 16$
5 $[5, 5, -w^{2} + w + 2]$ $\phantom{-}e$
7 $[7, 7, -w^{2} + 2]$ $\phantom{-}e^{3} - 4e^{2} - 3e + 17$
13 $[13, 13, -w^{2} + 3]$ $-1$
13 $[13, 13, w^{2} - w - 4]$ $\phantom{-}0$
16 $[16, 2, 2]$ $\phantom{-}2e - 2$
19 $[19, 19, -w^{2} + w + 1]$ $\phantom{-}2e^{3} - 9e^{2} - 3e + 35$
23 $[23, 23, -w^{3} + 4w + 2]$ $-2e^{3} + 8e^{2} + 4e - 24$
25 $[25, 5, -w^{3} + w^{2} + 3w - 1]$ $\phantom{-}4e^{3} - 18e^{2} - 8e + 68$
29 $[29, 29, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}3e^{3} - 12e^{2} - 7e + 38$
29 $[29, 29, -w + 3]$ $\phantom{-}2$
31 $[31, 31, -w^{3} + w^{2} + 5w - 2]$ $\phantom{-}2e^{3} - 10e^{2} - e + 36$
37 $[37, 37, w^{3} - 4w - 1]$ $-5e^{3} + 21e^{2} + 15e - 85$
37 $[37, 37, w^{3} - 3w + 1]$ $-3e^{2} + 6e + 12$
53 $[53, 53, -w^{3} + 2w^{2} + 4w - 6]$ $-5e^{3} + 22e^{2} + 9e - 76$
59 $[59, 59, w^{2} + w - 4]$ $-4e^{3} + 17e^{2} + 11e - 62$
61 $[61, 61, -2w^{2} + w + 8]$ $\phantom{-}4e^{3} - 18e^{2} - 8e + 62$
73 $[73, 73, -w^{3} + 5w - 1]$ $\phantom{-}2e^{3} - 8e^{2} - 10e + 32$
79 $[79, 79, 2w^{2} + w - 6]$ $-3e^{3} + 14e^{2} + 5e - 51$
79 $[79, 79, 2w^{3} - w^{2} - 9w + 3]$ $\phantom{-}e^{3} - 6e^{2} - 3e + 28$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$13$ $[13, 13, -w^{2} + 3]$ $1$