Properties

Label 4.4.16609.1-5.1-b
Base field 4.4.16609.1
Weight $[2, 2, 2, 2]$
Level norm $5$
Level $[5, 5, w^{2} - 4]$
Dimension $4$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.16609.1

Generator \(w\), with minimal polynomial \(x^{4} - 7x^{2} - x + 9\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[5, 5, w^{2} - 4]$
Dimension: $4$
CM: no
Base change: no
Newspace dimension: $11$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} + 4x^{3} - 12x - 7\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w^{2} + w + 4]$ $\phantom{-}e$
3 $[3, 3, -w^{2} + w + 3]$ $-e^{3} - 2e^{2} + 3e + 4$
5 $[5, 5, w^{2} - 4]$ $\phantom{-}1$
8 $[8, 2, w^{3} - w^{2} - 4w + 5]$ $\phantom{-}2e^{3} + 3e^{2} - 8e - 6$
17 $[17, 17, -w^{2} + w + 5]$ $-3e^{3} - 4e^{2} + 11e + 4$
27 $[27, 3, -w^{3} + 4w - 2]$ $\phantom{-}2e^{2} - 8$
29 $[29, 29, -w^{2} + w + 1]$ $-e^{3} - 4e^{2} + e + 6$
29 $[29, 29, -w^{3} + 4w + 2]$ $\phantom{-}2e^{3} + 4e^{2} - 6e - 12$
37 $[37, 37, -2w^{3} + 3w^{2} + 9w - 13]$ $-2e^{3} - 4e^{2} + 10e + 12$
41 $[41, 41, w^{3} - w^{2} - 5w + 2]$ $\phantom{-}2e^{3} + 4e^{2} - 6e - 10$
43 $[43, 43, -w^{3} + w^{2} + 3w - 4]$ $\phantom{-}e^{3} + 2e^{2} + e$
61 $[61, 61, w^{2} - 2w - 2]$ $\phantom{-}4e^{3} + 4e^{2} - 20e - 6$
61 $[61, 61, 2w^{2} - w - 8]$ $\phantom{-}e^{3} - 5e - 8$
67 $[67, 67, -4w^{3} + 5w^{2} + 18w - 22]$ $-4e^{3} - 4e^{2} + 20e + 6$
73 $[73, 73, -w^{2} - 2w + 2]$ $-3e^{3} - 4e^{2} + 15e + 6$
79 $[79, 79, w^{2} - 2w - 4]$ $-2e^{3} + 10e + 2$
89 $[89, 89, w^{2} + w - 5]$ $\phantom{-}4e^{3} + 8e^{2} - 12e - 20$
89 $[89, 89, 2w^{3} - 2w^{2} - 9w + 8]$ $-4e^{3} - 12e^{2} + 8e + 24$
89 $[89, 89, w^{3} - 5w - 5]$ $\phantom{-}4e^{3} + 6e^{2} - 16e - 18$
89 $[89, 89, -w^{3} + 2w^{2} + 4w - 4]$ $\phantom{-}4e^{3} + 6e^{2} - 16e - 10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, w^{2} - 4]$ $-1$