# Properties

 Label 4.4.16609.1-16.1-a Base field 4.4.16609.1 Weight $[2, 2, 2, 2]$ Level norm $16$ Level $[16, 2, 2]$ Dimension $1$ CM no Base change no

# Learn more about

## Base field 4.4.16609.1

Generator $$w$$, with minimal polynomial $$x^{4} - 7x^{2} - x + 9$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[16, 2, 2]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $23$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w^{2} + w + 4]$ $-1$
3 $[3, 3, -w^{2} + w + 3]$ $\phantom{-}2$
5 $[5, 5, w^{2} - 4]$ $\phantom{-}0$
8 $[8, 2, w^{3} - w^{2} - 4w + 5]$ $-1$
17 $[17, 17, -w^{2} + w + 5]$ $\phantom{-}0$
27 $[27, 3, -w^{3} + 4w - 2]$ $\phantom{-}8$
29 $[29, 29, -w^{2} + w + 1]$ $-6$
29 $[29, 29, -w^{3} + 4w + 2]$ $\phantom{-}6$
37 $[37, 37, -2w^{3} + 3w^{2} + 9w - 13]$ $\phantom{-}10$
41 $[41, 41, w^{3} - w^{2} - 5w + 2]$ $\phantom{-}0$
43 $[43, 43, -w^{3} + w^{2} + 3w - 4]$ $\phantom{-}4$
61 $[61, 61, w^{2} - 2w - 2]$ $\phantom{-}10$
61 $[61, 61, 2w^{2} - w - 8]$ $\phantom{-}10$
67 $[67, 67, -4w^{3} + 5w^{2} + 18w - 22]$ $-2$
73 $[73, 73, -w^{2} - 2w + 2]$ $\phantom{-}14$
79 $[79, 79, w^{2} - 2w - 4]$ $\phantom{-}14$
89 $[89, 89, w^{2} + w - 5]$ $-12$
89 $[89, 89, 2w^{3} - 2w^{2} - 9w + 8]$ $-6$
89 $[89, 89, w^{3} - 5w - 5]$ $\phantom{-}6$
89 $[89, 89, -w^{3} + 2w^{2} + 4w - 4]$ $\phantom{-}6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w^{2} + w + 4]$ $1$
$8$ $[8, 2, w^{3} - w^{2} - 4w + 5]$ $1$