/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([2, 0, -6, -2, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([16, 2, 2]) primes_array = [ [2, 2, w],\ [5, 5, -w^3 + 3*w^2 + 2*w - 1],\ [5, 5, w - 1],\ [11, 11, w^3 - 2*w^2 - 5*w - 1],\ [13, 13, -w^3 + 3*w^2 + 3*w - 1],\ [17, 17, 2*w^3 - 5*w^2 - 9*w + 5],\ [23, 23, -w^3 + 3*w^2 + 4*w - 5],\ [25, 5, -w^2 + 3*w + 1],\ [29, 29, -2*w^3 + 6*w^2 + 5*w - 1],\ [31, 31, -w^2 + 2*w + 1],\ [43, 43, -w^3 + 3*w^2 + 2*w - 3],\ [43, 43, -w^3 + 2*w^2 + 6*w - 3],\ [59, 59, 2*w^3 - 6*w^2 - 7*w + 7],\ [73, 73, 3*w^3 - 6*w^2 - 16*w - 5],\ [79, 79, -5*w^3 + 14*w^2 + 20*w - 17],\ [81, 3, -3],\ [83, 83, -w - 3],\ [83, 83, w^2 - 3*w - 7],\ [89, 89, w^2 - 2*w - 7],\ [101, 101, -2*w^3 + 5*w^2 + 8*w - 3],\ [101, 101, 5*w^3 - 14*w^2 - 19*w + 17],\ [103, 103, -w^3 + w^2 + 8*w + 3],\ [103, 103, 2*w^3 - 5*w^2 - 7*w - 1],\ [109, 109, 3*w^3 - 7*w^2 - 14*w + 1],\ [109, 109, -w^2 + 4*w + 1],\ [127, 127, -3*w^3 + 8*w^2 + 11*w - 7],\ [127, 127, -w^3 + 2*w^2 + 7*w + 1],\ [137, 137, -2*w^3 + 5*w^2 + 9*w - 1],\ [139, 139, -w^3 + 3*w^2 + 2*w - 5],\ [149, 149, w^3 - 3*w^2 - w - 1],\ [149, 149, -2*w^3 + 4*w^2 + 10*w + 1],\ [163, 163, w^3 - 4*w^2 - w + 11],\ [163, 163, 2*w^3 - 4*w^2 - 10*w + 1],\ [173, 173, -4*w^3 + 11*w^2 + 15*w - 13],\ [179, 179, 2*w^2 - 6*w - 3],\ [179, 179, -w^3 + 2*w^2 + 7*w - 1],\ [181, 181, w^3 - 10*w - 9],\ [181, 181, -3*w^3 + 8*w^2 + 14*w - 7],\ [199, 199, w^3 - 8*w - 9],\ [211, 211, 2*w - 3],\ [223, 223, -w^3 + 4*w^2 + w - 5],\ [227, 227, w^3 - 2*w^2 - 5*w - 5],\ [227, 227, -3*w^3 + 7*w^2 + 14*w - 5],\ [227, 227, -4*w^3 + 10*w^2 + 19*w - 7],\ [227, 227, w^2 - 4*w - 5],\ [239, 239, -2*w^3 + 5*w^2 + 7*w - 3],\ [251, 251, -w^3 + 4*w^2 + 2*w - 11],\ [251, 251, 2*w^3 - 6*w^2 - 6*w + 1],\ [257, 257, -3*w^3 + 6*w^2 + 16*w + 3],\ [263, 263, -w^3 + 3*w^2 + 3*w - 7],\ [263, 263, w^3 - 4*w^2 + 7],\ [269, 269, -2*w^3 + 6*w^2 + 6*w - 11],\ [269, 269, -w^3 + 4*w^2 - w - 5],\ [271, 271, -3*w^3 + 9*w^2 + 11*w - 11],\ [271, 271, w^2 - 5*w - 3],\ [277, 277, w^3 - 4*w^2 - 2*w + 7],\ [277, 277, -2*w^3 + 7*w^2 + 8*w - 9],\ [281, 281, 2*w^2 - 4*w - 5],\ [281, 281, 2*w^3 - 4*w^2 - 11*w + 1],\ [283, 283, -3*w^3 + 8*w^2 + 14*w - 11],\ [293, 293, w^3 - 2*w^2 - 6*w + 5],\ [307, 307, -2*w^3 + 5*w^2 + 7*w - 1],\ [313, 313, 2*w^3 - 4*w^2 - 9*w + 3],\ [313, 313, -2*w^3 + 5*w^2 + 6*w - 3],\ [317, 317, -2*w^3 + 5*w^2 + 9*w + 1],\ [347, 347, 4*w^3 - 9*w^2 - 21*w + 3],\ [347, 347, 4*w^3 - 10*w^2 - 18*w + 5],\ [349, 349, -2*w^3 + 6*w^2 + 7*w - 3],\ [353, 353, -w^3 + 12*w + 5],\ [353, 353, w^2 - w - 7],\ [359, 359, -2*w^3 + 5*w^2 + 6*w - 7],\ [359, 359, -w^3 + 4*w^2 - 11],\ [373, 373, -w^3 + 2*w^2 + 6*w + 5],\ [379, 379, -3*w^3 + 8*w^2 + 14*w - 5],\ [397, 397, 6*w^3 - 14*w^2 - 30*w + 7],\ [401, 401, 3*w^3 - 5*w^2 - 20*w - 7],\ [409, 409, 3*w^3 - 7*w^2 - 12*w - 3],\ [409, 409, 2*w^2 - 4*w - 7],\ [421, 421, w^3 - 11*w - 11],\ [421, 421, -w^3 + 3*w^2 + w - 7],\ [431, 431, 2*w^3 - 3*w^2 - 14*w - 3],\ [431, 431, -4*w^3 + 11*w^2 + 15*w - 15],\ [433, 433, 2*w^3 - 5*w^2 - 6*w + 1],\ [439, 439, -4*w^3 + 11*w^2 + 13*w - 9],\ [439, 439, -2*w^3 + 6*w^2 + 8*w - 11],\ [443, 443, 2*w - 5],\ [443, 443, -6*w^3 + 17*w^2 + 24*w - 21],\ [449, 449, w^3 - 2*w^2 - 8*w + 3],\ [449, 449, 4*w^3 - 12*w^2 - 15*w + 17],\ [457, 457, -2*w^3 + 4*w^2 + 9*w + 5],\ [461, 461, -3*w^3 + 6*w^2 + 15*w - 1],\ [461, 461, -3*w^3 + 7*w^2 + 17*w + 1],\ [463, 463, -4*w^3 + 10*w^2 + 17*w - 7],\ [463, 463, -3*w^3 + 10*w^2 + 9*w - 17],\ [467, 467, 4*w^3 - 8*w^2 - 21*w - 7],\ [467, 467, w^3 - 6*w^2 + 3*w + 19],\ [479, 479, -w^3 + w^2 + 8*w + 1],\ [487, 487, -4*w^3 + 11*w^2 + 14*w - 15],\ [487, 487, 3*w^3 - 6*w^2 - 15*w - 5],\ [491, 491, w^2 - 5],\ [503, 503, 2*w^3 - 5*w^2 - 11*w + 3],\ [523, 523, -3*w^3 + 7*w^2 + 13*w + 1],\ [547, 547, 2*w^3 - 3*w^2 - 12*w - 3],\ [547, 547, 2*w^3 - 3*w^2 - 12*w - 9],\ [557, 557, -3*w^3 + 9*w^2 + 9*w - 11],\ [557, 557, -6*w^3 + 15*w^2 + 27*w - 13],\ [563, 563, -3*w^3 + 7*w^2 + 14*w - 7],\ [571, 571, -5*w^3 + 11*w^2 + 26*w - 3],\ [593, 593, -6*w^3 + 15*w^2 + 26*w - 7],\ [599, 599, 7*w^3 - 18*w^2 - 29*w + 17],\ [599, 599, -2*w^3 + 6*w^2 + 8*w - 3],\ [601, 601, -7*w^3 + 20*w^2 + 28*w - 23],\ [601, 601, 3*w^3 - 7*w^2 - 12*w + 5],\ [607, 607, 5*w^3 - 12*w^2 - 24*w + 9],\ [607, 607, w^3 - 5*w^2 + 15],\ [613, 613, -w^3 + 5*w^2 - 2*w - 9],\ [617, 617, w^3 + w^2 - 13*w - 15],\ [617, 617, 2*w^3 - 4*w^2 - 8*w - 1],\ [619, 619, 5*w^3 - 10*w^2 - 27*w - 7],\ [619, 619, 2*w^3 - 4*w^2 - 10*w + 3],\ [643, 643, w^3 - 5*w^2 + 5*w + 5],\ [643, 643, 4*w^3 - 9*w^2 - 20*w - 1],\ [643, 643, 3*w^3 - 7*w^2 - 14*w - 3],\ [643, 643, -3*w^3 + 7*w^2 + 13*w - 3],\ [647, 647, -3*w^3 + 8*w^2 + 12*w - 3],\ [653, 653, -w^3 + 9*w + 13],\ [653, 653, -w^3 + 4*w^2 + 3*w - 9],\ [653, 653, -2*w^3 + 7*w^2 + 4*w - 7],\ [653, 653, w^2 - 4*w - 9],\ [673, 673, -w^3 + 5*w^2 + w - 13],\ [683, 683, w^3 - 3*w^2 - 3*w - 3],\ [701, 701, 5*w^3 - 13*w^2 - 23*w + 9],\ [709, 709, 2*w^3 - w^2 - 19*w - 15],\ [719, 719, -5*w^3 + 15*w^2 + 20*w - 19],\ [727, 727, -w - 5],\ [751, 751, -4*w^3 + 10*w^2 + 15*w - 9],\ [751, 751, 6*w^3 - 17*w^2 - 22*w + 21],\ [757, 757, 3*w^3 - 6*w^2 - 18*w - 1],\ [757, 757, -w^3 + 4*w^2 + 2*w + 1],\ [769, 769, w^2 - 2*w + 3],\ [773, 773, 5*w^3 - 12*w^2 - 23*w + 9],\ [787, 787, 2*w^3 - 4*w^2 - 5*w + 1],\ [797, 797, -3*w^3 + 8*w^2 + 10*w - 3],\ [809, 809, 2*w^2 - 5*w - 1],\ [809, 809, 4*w^3 - 6*w^2 - 28*w - 11],\ [827, 827, 4*w^3 - 8*w^2 - 22*w - 1],\ [827, 827, 2*w^2 - 6*w - 9],\ [829, 829, -w^3 + w^2 + 10*w + 1],\ [839, 839, -2*w^3 + 2*w^2 + 16*w + 7],\ [877, 877, 6*w^3 - 16*w^2 - 25*w + 13],\ [877, 877, w^3 - w^2 - 7*w + 1],\ [881, 881, 2*w^3 - 2*w^2 - 15*w - 7],\ [881, 881, -4*w^3 + 7*w^2 + 26*w + 9],\ [887, 887, 2*w^3 - 4*w^2 - 13*w - 1],\ [907, 907, 5*w^3 - 11*w^2 - 26*w - 1],\ [907, 907, 5*w^3 - 13*w^2 - 22*w + 9],\ [907, 907, w^3 - 5*w^2 + 2*w + 13],\ [907, 907, -2*w^3 + 7*w^2 + 5*w - 7],\ [911, 911, -3*w^3 + 8*w^2 + 9*w - 5],\ [919, 919, -2*w^3 + 7*w^2 + 6*w - 3],\ [919, 919, -3*w^3 + 8*w^2 + 15*w - 7],\ [947, 947, -2*w^3 + 5*w^2 + 12*w - 9],\ [947, 947, -w^2 + w - 3],\ [947, 947, 3*w^3 - 6*w^2 - 14*w - 7],\ [947, 947, -w^3 + 5*w^2 - w - 17],\ [953, 953, 3*w^3 - 9*w^2 - 9*w + 13],\ [953, 953, -4*w^3 + 13*w^2 + 11*w - 23],\ [967, 967, 8*w^3 - 20*w^2 - 33*w + 19]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x^8 - 30*x^6 + 260*x^4 - 600*x^2 + 400 K. = NumberField(heckePol) hecke_eigenvalues_array = [0, e, 1/10*e^6 - 14/5*e^4 + 21*e^2 - 26, 9/100*e^7 - 13/5*e^5 + 101/5*e^3 - 26*e, 1/50*e^7 - 3/5*e^5 + 23/5*e^3 - 3*e, -9/100*e^7 + 13/5*e^5 - 101/5*e^3 + 27*e, 1/10*e^6 - 14/5*e^4 + 20*e^2 - 20, -7/100*e^7 + 2*e^5 - 78/5*e^3 + 23*e, 1/10*e^7 - 14/5*e^5 + 21*e^3 - 27*e, -3/25*e^7 + 17/5*e^5 - 128/5*e^3 + 32*e, 1/5*e^4 - 2*e^2 - 8, -3/100*e^7 + 4/5*e^5 - 27/5*e^3 + 6*e, 1/10*e^6 - 13/5*e^4 + 18*e^2 - 20, -9/100*e^7 + 12/5*e^5 - 81/5*e^3 + 11*e, 1/10*e^6 - 16/5*e^4 + 28*e^2 - 44, 2/5*e^4 - 7*e^2 + 14, -3/10*e^6 + 43/5*e^4 - 66*e^2 + 84, 1/5*e^6 - 27/5*e^4 + 38*e^2 - 40, 2/5*e^4 - 7*e^2 + 22, -1/50*e^7 + 3/5*e^5 - 28/5*e^3 + 17*e, -1/10*e^6 + 16/5*e^4 - 27*e^2 + 30, 9/50*e^7 - 5*e^5 + 182/5*e^3 - 40*e, -8/25*e^7 + 9*e^5 - 338/5*e^3 + 84*e, -e^3 + 13*e, -9/50*e^7 + 5*e^5 - 182/5*e^3 + 41*e, -7/50*e^7 + 19/5*e^5 - 136/5*e^3 + 32*e, -1/10*e^7 + 14/5*e^5 - 20*e^3 + 16*e, -9/100*e^7 + 13/5*e^5 - 96/5*e^3 + 11*e, -1/10*e^6 + 3*e^4 - 26*e^2 + 36, 3/10*e^6 - 44/5*e^4 + 69*e^2 - 90, 3/50*e^7 - 9/5*e^5 + 74/5*e^3 - 27*e, 3/10*e^6 - 43/5*e^4 + 66*e^2 - 84, 17/100*e^7 - 5*e^5 + 203/5*e^3 - 62*e, 1/5*e^6 - 29/5*e^4 + 44*e^2 - 50, -1/100*e^7 + 1/5*e^5 - 9/5*e^3 + 14*e, 3/100*e^7 - 4/5*e^5 + 27/5*e^3 - 2*e, 1/5*e^6 - 29/5*e^4 + 44*e^2 - 42, 2/25*e^7 - 12/5*e^5 + 97/5*e^3 - 27*e, -1/10*e^6 + 2*e^4 - 8*e^2 + 4, -1/10*e^6 + 17/5*e^4 - 30*e^2 + 36, -1/10*e^6 + 14/5*e^4 - 20*e^2 + 20, -2/5*e^6 + 11*e^4 - 82*e^2 + 112, -7/20*e^7 + 10*e^5 - 77*e^3 + 102*e, -31/100*e^7 + 9*e^5 - 349/5*e^3 + 86*e, 3/5*e^4 - 10*e^2 + 24, -7/50*e^7 + 21/5*e^5 - 176/5*e^3 + 64*e, 1/10*e^6 - 11/5*e^4 + 10*e^2 + 4, 21/100*e^7 - 6*e^5 + 229/5*e^3 - 62*e, -11/100*e^7 + 16/5*e^5 - 124/5*e^3 + 31*e, 1/10*e^6 - 14/5*e^4 + 20*e^2 - 12, -16, -1/5*e^6 + 27/5*e^4 - 36*e^2 + 30, -1/5*e^6 + 27/5*e^4 - 36*e^2 + 30, -2/5*e^6 + 56/5*e^4 - 84*e^2 + 104, -17/50*e^7 + 49/5*e^5 - 376/5*e^3 + 92*e, -1/2*e^6 + 14*e^4 - 103*e^2 + 118, -3/5*e^6 + 84/5*e^4 - 124*e^2 + 150, 3/5*e^6 - 88/5*e^4 + 137*e^2 - 162, -1/20*e^7 + 7/5*e^5 - 11*e^3 + 19*e, 1/2*e^6 - 69/5*e^4 + 102*e^2 - 124, -1/2*e^6 + 14*e^4 - 103*e^2 + 134, -19/100*e^7 + 26/5*e^5 - 181/5*e^3 + 26*e, -21/100*e^7 + 29/5*e^5 - 209/5*e^3 + 47*e, -11/100*e^7 + 3*e^5 - 104/5*e^3 + 15*e, 7/50*e^7 - 4*e^5 + 151/5*e^3 - 31*e, -7/100*e^7 + 2*e^5 - 83/5*e^3 + 38*e, 27/100*e^7 - 38/5*e^5 + 293/5*e^3 - 94*e, 1/25*e^7 - 7/5*e^5 + 66/5*e^3 - 19*e, 31/100*e^7 - 9*e^5 + 354/5*e^3 - 101*e, -3/5*e^6 + 87/5*e^4 - 136*e^2 + 178, -7/10*e^6 + 96/5*e^4 - 140*e^2 + 180, 7/10*e^6 - 20*e^4 + 152*e^2 - 196, -1/5*e^6 + 31/5*e^4 - 52*e^2 + 70, 19/100*e^7 - 27/5*e^5 + 201/5*e^3 - 42*e, -11/50*e^7 + 31/5*e^5 - 233/5*e^3 + 53*e, 63/100*e^7 - 89/5*e^5 + 672/5*e^3 - 169*e, 19/100*e^7 - 26/5*e^5 + 186/5*e^3 - 45*e, 2/5*e^6 - 52/5*e^4 + 69*e^2 - 66, 1/10*e^6 - 12/5*e^4 + 17*e^2 - 34, 1/5*e^6 - 24/5*e^4 + 28*e^2 - 26, -3/5*e^7 + 17*e^5 - 128*e^3 + 156*e, -1/10*e^6 + 16/5*e^4 - 28*e^2 + 28, 21/100*e^7 - 31/5*e^5 + 244/5*e^3 - 61*e, 17/25*e^7 - 97/5*e^5 + 742/5*e^3 - 188*e, 3/10*e^6 - 42/5*e^4 + 64*e^2 - 76, 2/5*e^6 - 53/5*e^4 + 74*e^2 - 72, -1/5*e^4 + 2*e^2 + 16, -33/100*e^7 + 48/5*e^5 - 382/5*e^3 + 111*e, 3/5*e^6 - 86/5*e^4 + 133*e^2 - 170, 1/5*e^6 - 33/5*e^4 + 56*e^2 - 54, -21/50*e^7 + 12*e^5 - 458/5*e^3 + 117*e, -11/50*e^7 + 31/5*e^5 - 223/5*e^3 + 33*e, -13/50*e^7 + 37/5*e^5 - 284/5*e^3 + 80*e, -1/10*e^6 + 14/5*e^4 - 20*e^2 + 28, 11/20*e^7 - 78/5*e^5 + 119*e^3 - 158*e, 1/5*e^6 - 27/5*e^4 + 42*e^2 - 72, 1/10*e^7 - 16/5*e^5 + 28*e^3 - 44*e, 8, 11/50*e^7 - 32/5*e^5 + 258/5*e^3 - 88*e, 3/5*e^6 - 17*e^4 + 126*e^2 - 152, 3/25*e^7 - 17/5*e^5 + 118/5*e^3 - 8*e, -1/4*e^7 + 7*e^5 - 51*e^3 + 42*e, 17/100*e^7 - 23/5*e^5 + 163/5*e^3 - 34*e, 2/5*e^6 - 51/5*e^4 + 70*e^2 - 104, -1/2*e^6 + 66/5*e^4 - 91*e^2 + 110, -1/50*e^7 + 4/5*e^5 - 38/5*e^3 + 5*e, 49/100*e^7 - 71/5*e^5 + 551/5*e^3 - 142*e, -51/100*e^7 + 73/5*e^5 - 559/5*e^3 + 134*e, -61/100*e^7 + 87/5*e^5 - 659/5*e^3 + 159*e, 27/50*e^7 - 77/5*e^5 + 586/5*e^3 - 136*e, 3/50*e^7 - 9/5*e^5 + 74/5*e^3 - 28*e, 2/5*e^4 - 7*e^2 + 38, -17/100*e^7 + 23/5*e^5 - 163/5*e^3 + 43*e, -31/50*e^7 + 88/5*e^5 - 668/5*e^3 + 168*e, 1/5*e^6 - 26/5*e^4 + 36*e^2 - 32, -1/2*e^6 + 68/5*e^4 - 99*e^2 + 134, -1/5*e^6 + 26/5*e^4 - 36*e^2 + 42, 1/20*e^7 - 6/5*e^5 + 7*e^3 - 9*e, -9/20*e^7 + 64/5*e^5 - 99*e^3 + 146*e, 9/100*e^7 - 11/5*e^5 + 61/5*e^3 + 6*e, -39/100*e^7 + 54/5*e^5 - 401/5*e^3 + 106*e, -39/100*e^7 + 54/5*e^5 - 401/5*e^3 + 106*e, 41/100*e^7 - 59/5*e^5 + 459/5*e^3 - 134*e, 23/100*e^7 - 32/5*e^5 + 227/5*e^3 - 30*e, -8/25*e^7 + 9*e^5 - 338/5*e^3 + 76*e, -1/2*e^6 + 14*e^4 - 107*e^2 + 142, 1/5*e^6 - 29/5*e^4 + 44*e^2 - 66, -1/10*e^6 + 18/5*e^4 - 35*e^2 + 54, -1/5*e^6 + 28/5*e^4 - 44*e^2 + 46, -3*e^2 + 38, 2/5*e^6 - 57/5*e^4 + 86*e^2 - 104, 37/50*e^7 - 106/5*e^5 + 816/5*e^3 - 215*e, 7/10*e^6 - 98/5*e^4 + 145*e^2 - 186, -1/2*e^6 + 76/5*e^4 - 124*e^2 + 156, -3/5*e^6 + 84/5*e^4 - 124*e^2 + 136, 1/5*e^5 - 4*e^3 + 24*e, 4/5*e^6 - 114/5*e^4 + 176*e^2 - 232, -16/25*e^7 + 91/5*e^5 - 696/5*e^3 + 189*e, 1/10*e^6 - 14/5*e^4 + 21*e^2 - 18, -1/5*e^6 + 6*e^4 - 51*e^2 + 94, 14/25*e^7 - 16*e^5 + 614/5*e^3 - 155*e, -1/100*e^7 + 3/5*e^5 - 49/5*e^3 + 46*e, -1/5*e^7 + 27/5*e^5 - 36*e^3 + 17*e, -31/100*e^7 + 44/5*e^5 - 339/5*e^3 + 99*e, 39/100*e^7 - 56/5*e^5 + 441/5*e^3 - 129*e, 9/20*e^7 - 13*e^5 + 101*e^3 - 134*e, -4/5*e^6 + 109/5*e^4 - 158*e^2 + 168, 9/25*e^7 - 10*e^5 + 374/5*e^3 - 103*e, -1/5*e^7 + 28/5*e^5 - 42*e^3 + 48*e, -27/25*e^7 + 152/5*e^5 - 1142/5*e^3 + 281*e, 1/25*e^7 - 6/5*e^5 + 61/5*e^3 - 55*e, -23/100*e^7 + 33/5*e^5 - 262/5*e^3 + 79*e, 37/100*e^7 - 52/5*e^5 + 388/5*e^3 - 97*e, -7/50*e^7 + 4*e^5 - 146/5*e^3 + 24*e, -13/100*e^7 + 17/5*e^5 - 107/5*e^3 - 2*e, 83/100*e^7 - 118/5*e^5 + 897/5*e^3 - 234*e, -2/5*e^6 + 57/5*e^4 - 90*e^2 + 144, 1/5*e^6 - 31/5*e^4 + 46*e^2 - 16, -4/25*e^7 + 24/5*e^5 - 204/5*e^3 + 76*e, -11/50*e^7 + 31/5*e^5 - 238/5*e^3 + 76*e, 11/25*e^7 - 64/5*e^5 + 506/5*e^3 - 136*e, -1/10*e^6 + 17/5*e^4 - 30*e^2 + 44, -1/10*e^6 + 17/5*e^4 - 30*e^2 + 44, -1/5*e^6 + 29/5*e^4 - 50*e^2 + 112, -4/5*e^6 + 113/5*e^4 - 166*e^2 + 192, -e^6 + 143/5*e^4 - 216*e^2 + 266, 4/5*e^6 - 112/5*e^4 + 165*e^2 - 186, 12/25*e^7 - 14*e^5 + 542/5*e^3 - 124*e] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([2, 2, w])] = 1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]