# Properties

 Label 4.4.16357.1-25.2-i Base field 4.4.16357.1 Weight $[2, 2, 2, 2]$ Level norm $25$ Level $[25, 5, w^{2} + w - 2]$ Dimension $3$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.16357.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - x + 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[25, 5, w^{2} + w - 2]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $38$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} - 2x^{2} - 16x + 24$$
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $\phantom{-}2$
5 $[5, 5, -w^{3} + 5w + 2]$ $\phantom{-}1$
5 $[5, 5, w - 1]$ $\phantom{-}1$
11 $[11, 11, -w^{3} + 5w]$ $\phantom{-}e$
13 $[13, 13, -w^{3} + w^{2} + 6w - 3]$ $\phantom{-}e + 2$
16 $[16, 2, 2]$ $-\frac{1}{2}e^{2} + 7$
19 $[19, 19, 2w^{3} - w^{2} - 11w + 2]$ $-\frac{1}{2}e^{2} + e + 4$
25 $[25, 5, -w^{2} + w + 3]$ $\phantom{-}\frac{1}{2}e^{2} - e - 4$
27 $[27, 3, w^{3} - w^{2} - 5w + 4]$ $\phantom{-}\frac{1}{2}e^{2} - 4$
31 $[31, 31, -w - 3]$ $\phantom{-}4$
37 $[37, 37, -w^{3} - w^{2} + 6w + 4]$ $-\frac{1}{2}e^{2} - e + 8$
41 $[41, 41, w^{3} + w^{2} - 6w - 5]$ $\phantom{-}e^{2} - e - 6$
43 $[43, 43, w^{3} - 7w - 2]$ $\phantom{-}2e - 4$
47 $[47, 47, -2w^{3} + 11w + 2]$ $\phantom{-}\frac{1}{2}e^{2} - e - 6$
61 $[61, 61, w^{2} - 3]$ $-\frac{1}{2}e^{2} - e + 10$
67 $[67, 67, w^{2} + w - 4]$ $-e^{2} - 2e + 16$
79 $[79, 79, -4w^{3} + 2w^{2} + 22w - 9]$ $-e^{2} - e + 10$
97 $[97, 97, -3w^{3} + 2w^{2} + 19w - 6]$ $\phantom{-}e^{2} - 2e - 14$
97 $[97, 97, -w^{3} + 6w - 3]$ $-2$
97 $[97, 97, -3w^{3} + 16w]$ $-e^{2} + 20$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, -w^{3} + 5w + 2]$ $-1$
$5$ $[5, 5, w - 1]$ $-1$