# Properties

 Label 4.4.16357.1-11.1-b Base field 4.4.16357.1 Weight $[2, 2, 2, 2]$ Level norm $11$ Level $[11, 11, -w^{3} + 5w]$ Dimension $3$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.16357.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - x + 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[11, 11, -w^{3} + 5w]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $18$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} + 5x^{2} + 6x + 1$$
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $\phantom{-}e$
5 $[5, 5, -w^{3} + 5w + 2]$ $-e - 4$
5 $[5, 5, w - 1]$ $-e^{2} - 5e - 3$
11 $[11, 11, -w^{3} + 5w]$ $\phantom{-}1$
13 $[13, 13, -w^{3} + w^{2} + 6w - 3]$ $\phantom{-}5e^{2} + 18e + 10$
16 $[16, 2, 2]$ $-2e^{2} - 6e - 5$
19 $[19, 19, 2w^{3} - w^{2} - 11w + 2]$ $\phantom{-}2e^{2} + 5e - 4$
25 $[25, 5, -w^{2} + w + 3]$ $-3e^{2} - 6e + 4$
27 $[27, 3, w^{3} - w^{2} - 5w + 4]$ $-5e^{2} - 17e - 11$
31 $[31, 31, -w - 3]$ $-e^{2} - 5e - 5$
37 $[37, 37, -w^{3} - w^{2} + 6w + 4]$ $-2e^{2} - 8e - 4$
41 $[41, 41, w^{3} + w^{2} - 6w - 5]$ $\phantom{-}2e^{2} + 10e + 6$
43 $[43, 43, w^{3} - 7w - 2]$ $-4e^{2} - 18e - 10$
47 $[47, 47, -2w^{3} + 11w + 2]$ $-2e^{2} - 12e - 12$
61 $[61, 61, w^{2} - 3]$ $-e^{2} - e - 1$
67 $[67, 67, w^{2} + w - 4]$ $\phantom{-}4e^{2} + 11e + 6$
79 $[79, 79, -4w^{3} + 2w^{2} + 22w - 9]$ $\phantom{-}6e^{2} + 20e + 6$
97 $[97, 97, -3w^{3} + 2w^{2} + 19w - 6]$ $\phantom{-}8e + 14$
97 $[97, 97, -w^{3} + 6w - 3]$ $-4e^{2} - 12e - 10$
97 $[97, 97, -3w^{3} + 16w]$ $\phantom{-}4e^{2} + 12e + 4$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$11$ $[11, 11, -w^{3} + 5w]$ $-1$