Properties

Label 4.4.16317.1-25.1-e
Base field 4.4.16317.1
Weight $[2, 2, 2, 2]$
Level norm $25$
Level $[25, 5, w^{2} - w - 3]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.16317.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 4x^{2} + 5x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[25, 5, w^{2} - w - 3]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $50$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} - 2x - 4\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w + 1]$ $\phantom{-}e - 2$
5 $[5, 5, -w + 2]$ $\phantom{-}e$
7 $[7, 7, -w^{2} + 2w + 1]$ $-2$
7 $[7, 7, -w^{2} + 2]$ $-2$
9 $[9, 3, w^{3} - w^{2} - 4w]$ $-2$
16 $[16, 2, 2]$ $-1$
17 $[17, 17, -w^{3} + 2w^{2} + 3w - 2]$ $\phantom{-}e$
17 $[17, 17, -w^{3} + w^{2} + 4w - 2]$ $\phantom{-}e - 2$
25 $[25, 5, w^{2} - w - 3]$ $\phantom{-}1$
37 $[37, 37, 2w - 1]$ $\phantom{-}2$
43 $[43, 43, -w^{3} + 2w^{2} + 2w - 2]$ $\phantom{-}4e - 8$
43 $[43, 43, w^{3} - w^{2} - 3w + 1]$ $-4e$
59 $[59, 59, 2w - 5]$ $-4e + 4$
59 $[59, 59, -2w - 3]$ $-4e + 4$
79 $[79, 79, -w^{3} + 2w^{2} + 5w - 4]$ $\phantom{-}4e - 10$
79 $[79, 79, -w^{3} + w^{2} + 6w - 2]$ $-4e - 2$
83 $[83, 83, -w^{3} + 7w]$ $-2e$
83 $[83, 83, -w^{3} + 2w^{2} + 4w - 2]$ $\phantom{-}4$
83 $[83, 83, -w^{3} + w^{2} + 5w - 3]$ $-4$
83 $[83, 83, w^{2} - 2w - 6]$ $-2e + 4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$25$ $[25, 5, w^{2} - w - 3]$ $-1$