Properties

Label 4.4.16225.1-36.2-a
Base field 4.4.16225.1
Weight $[2, 2, 2, 2]$
Level norm $36$
Level $[36,6,-w^{2} + w + 4]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.16225.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 13x^{2} + 6x + 36\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[36,6,-w^{2} + w + 4]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $52$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} - 3x - 2\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{4}{3}w + 6]$ $-1$
4 $[4, 2, -\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{10}{3}w + 7]$ $\phantom{-}e$
9 $[9, 3, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{7}{2}w - 9]$ $\phantom{-}2$
9 $[9, 3, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{7}{3}w - 5]$ $-1$
11 $[11, 11, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w]$ $\phantom{-}2$
19 $[19, 19, w + 1]$ $-2e + 2$
19 $[19, 19, \frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{13}{6}w + 2]$ $-2$
25 $[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ $\phantom{-}2$
29 $[29, 29, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{13}{6}w]$ $\phantom{-}3e - 5$
29 $[29, 29, w - 1]$ $\phantom{-}e + 1$
31 $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$ $-3e + 7$
31 $[31, 31, \frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{1}{6}w + 2]$ $\phantom{-}e + 3$
41 $[41, 41, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{9}{2}w + 5]$ $\phantom{-}e + 3$
41 $[41, 41, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{5}{2}w - 8]$ $-e + 7$
59 $[59, 59, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w - 1]$ $-e + 1$
59 $[59, 59, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{7}{3}w - 7]$ $-2e + 4$
59 $[59, 59, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + 2]$ $\phantom{-}4e$
79 $[79, 79, w^{2} - 11]$ $\phantom{-}8$
79 $[79, 79, \frac{1}{6}w^{3} - \frac{7}{6}w^{2} - \frac{7}{6}w + 3]$ $-e - 1$
89 $[89, 89, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{19}{6}w - 5]$ $-4e + 6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,-\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{4}{3}w - 6]$ $1$
$9$ $[9,3,-\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{7}{3}w + 5]$ $1$