Properties

Label 4.4.16225.1-31.1-a
Base field 4.4.16225.1
Weight $[2, 2, 2, 2]$
Level norm $31$
Level $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$
Dimension $29$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.16225.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 13x^{2} + 6x + 36\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$
Dimension: $29$
CM: no
Base change: no
Newspace dimension: $58$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{29} - 11x^{28} - 13x^{27} + 551x^{26} - 1076x^{25} - 10842x^{24} + 38885x^{23} + 101273x^{22} - 586763x^{21} - 337609x^{20} + 4987239x^{19} - 1939705x^{18} - 25939472x^{17} + 25826110x^{16} + 83969450x^{15} - 125447376x^{14} - 163367084x^{13} + 339966020x^{12} + 165724359x^{11} - 544879197x^{10} - 30858824x^{9} + 501139116x^{8} - 96471233x^{7} - 236683523x^{6} + 78154632x^{5} + 44339744x^{4} - 15574596x^{3} - 3051164x^{2} + 796672x + 22912\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{4}{3}w + 6]$ $...$
4 $[4, 2, -\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{10}{3}w + 7]$ $\phantom{-}e$
9 $[9, 3, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{7}{2}w - 9]$ $...$
9 $[9, 3, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{7}{3}w - 5]$ $...$
11 $[11, 11, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w]$ $...$
19 $[19, 19, w + 1]$ $...$
19 $[19, 19, \frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{13}{6}w + 2]$ $...$
25 $[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ $...$
29 $[29, 29, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{13}{6}w]$ $...$
29 $[29, 29, w - 1]$ $...$
31 $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$ $-1$
31 $[31, 31, \frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{1}{6}w + 2]$ $...$
41 $[41, 41, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{9}{2}w + 5]$ $...$
41 $[41, 41, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{5}{2}w - 8]$ $...$
59 $[59, 59, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w - 1]$ $...$
59 $[59, 59, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{7}{3}w - 7]$ $...$
59 $[59, 59, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + 2]$ $...$
79 $[79, 79, w^{2} - 11]$ $...$
79 $[79, 79, \frac{1}{6}w^{3} - \frac{7}{6}w^{2} - \frac{7}{6}w + 3]$ $...$
89 $[89, 89, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{19}{6}w - 5]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$31$ $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$ $1$