# Properties

 Label 4.4.16225.1-29.2-b Base field 4.4.16225.1 Weight $[2, 2, 2, 2]$ Level norm $29$ Level $[29,29,-w + 1]$ Dimension $25$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.16225.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 13x^{2} + 6x + 36$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[29,29,-w + 1]$ Dimension: $25$ CM: no Base change: no Newspace dimension: $50$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{25} + 13x^{24} + 22x^{23} - 403x^{22} - 1870x^{21} + 3039x^{20} + 33764x^{19} + 25135x^{18} - 264060x^{17} - 527698x^{16} + 886086x^{15} + 3287837x^{14} - 260574x^{13} - 9588366x^{12} - 5868290x^{11} + 13393664x^{10} + 14299113x^{9} - 7998182x^{8} - 12941264x^{7} + 1852036x^{6} + 5315462x^{5} - 197285x^{4} - 942660x^{3} + 52384x^{2} + 44736x - 4864$$
Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{4}{3}w + 6]$ $\phantom{-}e$
4 $[4, 2, -\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{10}{3}w + 7]$ $...$
9 $[9, 3, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{7}{2}w - 9]$ $...$
9 $[9, 3, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{7}{3}w - 5]$ $...$
11 $[11, 11, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w]$ $...$
19 $[19, 19, w + 1]$ $...$
19 $[19, 19, \frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{13}{6}w + 2]$ $...$
25 $[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ $...$
29 $[29, 29, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{13}{6}w]$ $...$
29 $[29, 29, w - 1]$ $\phantom{-}1$
31 $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$ $...$
31 $[31, 31, \frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{1}{6}w + 2]$ $...$
41 $[41, 41, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{9}{2}w + 5]$ $...$
41 $[41, 41, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{5}{2}w - 8]$ $...$
59 $[59, 59, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w - 1]$ $...$
59 $[59, 59, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{7}{3}w - 7]$ $...$
59 $[59, 59, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + 2]$ $...$
79 $[79, 79, w^{2} - 11]$ $...$
79 $[79, 79, \frac{1}{6}w^{3} - \frac{7}{6}w^{2} - \frac{7}{6}w + 3]$ $...$
89 $[89, 89, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{19}{6}w - 5]$ $...$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29,29,-w + 1]$ $-1$