# Properties

 Base field 4.4.15952.1 Weight [2, 2, 2, 2] Level norm 9 Level $[9, 9, w^{3} - w^{2} - 6w + 3]$ Label 4.4.15952.1-9.1-e Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.15952.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - 2x + 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[9, 9, w^{3} - w^{2} - 6w + 3]$ Label 4.4.15952.1-9.1-e Dimension 2 Is CM no Is base change no Parent newspace dimension 12

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut +\mathstrut 2x$$ $$\mathstrut -\mathstrut 2$$
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}e$
3 $[3, 3, -w^{3} + w^{2} + 5w - 2]$ $\phantom{-}0$
11 $[11, 11, -w^{3} + 5w + 1]$ $\phantom{-}2e$
11 $[11, 11, -w + 2]$ $\phantom{-}2e + 2$
13 $[13, 13, -w^{3} + w^{2} + 4w + 1]$ $\phantom{-}2$
17 $[17, 17, -w^{3} + w^{2} + 6w - 1]$ $-2e - 6$
17 $[17, 17, -w^{2} - w + 3]$ $\phantom{-}4$
23 $[23, 23, w^{3} - 6w]$ $-2e - 2$
27 $[27, 3, w^{3} + w^{2} - 5w - 4]$ $-2e - 4$
41 $[41, 41, -w^{3} + w^{2} + 5w]$ $-2e + 6$
41 $[41, 41, 2w^{3} - 11w - 4]$ $-6e - 6$
53 $[53, 53, 2w^{3} - 2w^{2} - 11w + 6]$ $\phantom{-}2e + 10$
59 $[59, 59, 2w^{3} - 11w - 2]$ $\phantom{-}2e + 10$
67 $[67, 67, w^{3} - 7w - 1]$ $-2e + 10$
71 $[71, 71, 3w^{3} - 2w^{2} - 15w + 1]$ $-2e + 4$
79 $[79, 79, -3w^{3} + w^{2} + 16w + 3]$ $\phantom{-}2e$
89 $[89, 89, -4w^{3} + 2w^{2} + 22w - 3]$ $-10$
101 $[101, 101, -2w^{3} + 13w + 6]$ $-4e - 12$
101 $[101, 101, w^{3} + w^{2} - 6w - 3]$ $-4e - 2$
101 $[101, 101, -3w^{3} + 2w^{2} + 17w - 3]$ $\phantom{-}4e + 14$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w^{3} + w^{2} + 5w - 2]$ $1$