# Properties

 Label 4.4.15952.1-6.1-b Base field 4.4.15952.1 Weight $[2, 2, 2, 2]$ Level norm $6$ Level $[6, 6, w - 1]$ Dimension $3$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.15952.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - 2x + 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[6, 6, w - 1]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $6$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} + 5x^{2} - 15x - 36$$
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}1$
3 $[3, 3, -w^{3} + w^{2} + 5w - 2]$ $\phantom{-}1$
11 $[11, 11, -w^{3} + 5w + 1]$ $\phantom{-}e$
11 $[11, 11, -w + 2]$ $-\frac{1}{3}e^{2} - \frac{2}{3}e + 6$
13 $[13, 13, -w^{3} + w^{2} + 4w + 1]$ $\phantom{-}e + 2$
17 $[17, 17, -w^{3} + w^{2} + 6w - 1]$ $-e - 1$
17 $[17, 17, -w^{2} - w + 3]$ $-e - 1$
23 $[23, 23, w^{3} - 6w]$ $\phantom{-}\frac{1}{3}e^{2} + \frac{2}{3}e - 1$
27 $[27, 3, w^{3} + w^{2} - 5w - 4]$ $-\frac{1}{3}e^{2} - \frac{5}{3}e + 3$
41 $[41, 41, -w^{3} + w^{2} + 5w]$ $\phantom{-}e - 1$
41 $[41, 41, 2w^{3} - 11w - 4]$ $\phantom{-}\frac{2}{3}e^{2} + \frac{4}{3}e - 8$
53 $[53, 53, 2w^{3} - 2w^{2} - 11w + 6]$ $\phantom{-}\frac{2}{3}e^{2} + \frac{7}{3}e - 8$
59 $[59, 59, 2w^{3} - 11w - 2]$ $-\frac{1}{3}e^{2} + \frac{1}{3}e + 11$
67 $[67, 67, w^{3} - 7w - 1]$ $\phantom{-}e - 6$
71 $[71, 71, 3w^{3} - 2w^{2} - 15w + 1]$ $-\frac{1}{3}e^{2} - \frac{2}{3}e + 4$
79 $[79, 79, -3w^{3} + w^{2} + 16w + 3]$ $-\frac{2}{3}e^{2} - \frac{13}{3}e + 11$
89 $[89, 89, -4w^{3} + 2w^{2} + 22w - 3]$ $-\frac{1}{3}e^{2} - \frac{5}{3}e + 3$
101 $[101, 101, -2w^{3} + 13w + 6]$ $-\frac{2}{3}e^{2} - \frac{1}{3}e + 16$
101 $[101, 101, w^{3} + w^{2} - 6w - 3]$ $\phantom{-}\frac{1}{3}e^{2} + \frac{5}{3}e + 3$
101 $[101, 101, -3w^{3} + 2w^{2} + 17w - 3]$ $\phantom{-}\frac{1}{3}e^{2} + \frac{2}{3}e - 16$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w + 1]$ $-1$
$3$ $[3, 3, -w^{3} + w^{2} + 5w - 2]$ $-1$