Properties

Base field 4.4.15952.1
Weight [2, 2, 2, 2]
Level norm 16
Level $[16, 2, 2]$
Label 4.4.15952.1-16.1-d
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.15952.1

Generator \(w\), with minimal polynomial \(x^{4} - 6x^{2} - 2x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[16, 2, 2]$
Label 4.4.15952.1-16.1-d
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 16

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} \) \(\mathstrut -\mathstrut x \) \(\mathstrut -\mathstrut 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, -w^{3} + w^{2} + 5w - 2]$ $\phantom{-}e$
11 $[11, 11, -w^{3} + 5w + 1]$ $\phantom{-}3e - 1$
11 $[11, 11, -w + 2]$ $-3e - 1$
13 $[13, 13, -w^{3} + w^{2} + 4w + 1]$ $-2e$
17 $[17, 17, -w^{3} + w^{2} + 6w - 1]$ $\phantom{-}e - 5$
17 $[17, 17, -w^{2} - w + 3]$ $\phantom{-}e$
23 $[23, 23, w^{3} - 6w]$ $\phantom{-}2e - 4$
27 $[27, 3, w^{3} + w^{2} - 5w - 4]$ $\phantom{-}e + 2$
41 $[41, 41, -w^{3} + w^{2} + 5w]$ $-4e + 6$
41 $[41, 41, 2w^{3} - 11w - 4]$ $-3e + 6$
53 $[53, 53, 2w^{3} - 2w^{2} - 11w + 6]$ $-4e + 6$
59 $[59, 59, 2w^{3} - 11w - 2]$ $-3e - 6$
67 $[67, 67, w^{3} - 7w - 1]$ $-e + 2$
71 $[71, 71, 3w^{3} - 2w^{2} - 15w + 1]$ $\phantom{-}8e - 4$
79 $[79, 79, -3w^{3} + w^{2} + 16w + 3]$ $-4e$
89 $[89, 89, -4w^{3} + 2w^{2} + 22w - 3]$ $-5e + 7$
101 $[101, 101, -2w^{3} + 13w + 6]$ $\phantom{-}6e - 10$
101 $[101, 101, w^{3} + w^{2} - 6w - 3]$ $-4e + 6$
101 $[101, 101, -3w^{3} + 2w^{2} + 17w - 3]$ $-8e + 10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $-1$