Properties

Label 4.4.15188.1-8.4-b
Base field 4.4.15188.1
Weight $[2, 2, 2, 2]$
Level norm $8$
Level $[8, 8, -w^{3} + w^{2} + 7w - 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.15188.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 7x^{2} + x + 2\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[8, 8, -w^{3} + w^{2} + 7w - 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $10$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
2 $[2, 2, -\frac{1}{2}w^{3} + w^{2} + \frac{3}{2}w]$ $-2$
11 $[11, 11, \frac{1}{2}w^{3} - w^{2} - \frac{5}{2}w + 4]$ $\phantom{-}0$
11 $[11, 11, -w^{3} + w^{2} + 6w + 1]$ $-2$
13 $[13, 13, -w^{3} + w^{2} + 6w - 3]$ $-2$
19 $[19, 19, -\frac{1}{2}w^{3} + w^{2} + \frac{5}{2}w]$ $-6$
23 $[23, 23, -\frac{1}{2}w^{3} + 2w^{2} - \frac{1}{2}w - 2]$ $\phantom{-}8$
31 $[31, 31, -w^{3} + w^{2} + 6w - 1]$ $-4$
31 $[31, 31, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $\phantom{-}6$
43 $[43, 43, \frac{1}{2}w^{3} - w^{2} - \frac{9}{2}w + 2]$ $-8$
67 $[67, 67, w^{2} - w - 5]$ $-8$
67 $[67, 67, -\frac{1}{2}w^{3} + \frac{11}{2}w + 2]$ $\phantom{-}2$
73 $[73, 73, w^{2} + w + 1]$ $\phantom{-}6$
79 $[79, 79, \frac{1}{2}w^{3} + w^{2} - \frac{5}{2}w - 2]$ $\phantom{-}16$
81 $[81, 3, -3]$ $-14$
83 $[83, 83, 2w^{3} - 2w^{2} - 12w + 5]$ $\phantom{-}12$
83 $[83, 83, -\frac{1}{2}w^{3} - w^{2} + \frac{1}{2}w + 2]$ $-4$
89 $[89, 89, -\frac{3}{2}w^{3} + 2w^{2} + \frac{17}{2}w - 2]$ $-14$
89 $[89, 89, \frac{3}{2}w^{3} - 2w^{2} - \frac{21}{2}w + 2]$ $-12$
97 $[97, 97, \frac{1}{2}w^{3} - w^{2} - \frac{1}{2}w - 2]$ $-10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$