Properties

Label 4.4.15188.1-4.1-a
Base field 4.4.15188.1
Weight $[2, 2, 2, 2]$
Level norm $4$
Level $[4, 2, \frac{1}{2}w^{3} - w^{2} - \frac{5}{2}w + 3]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.15188.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 7x^{2} + x + 2\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[4, 2, \frac{1}{2}w^{3} - w^{2} - \frac{5}{2}w + 3]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} - 3x - 6\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}1$
2 $[2, 2, -\frac{1}{2}w^{3} + w^{2} + \frac{3}{2}w]$ $\phantom{-}1$
11 $[11, 11, \frac{1}{2}w^{3} - w^{2} - \frac{5}{2}w + 4]$ $\phantom{-}e$
11 $[11, 11, -w^{3} + w^{2} + 6w + 1]$ $\phantom{-}e$
13 $[13, 13, -w^{3} + w^{2} + 6w - 3]$ $-2e + 4$
19 $[19, 19, -\frac{1}{2}w^{3} + w^{2} + \frac{5}{2}w]$ $-e - 2$
23 $[23, 23, -\frac{1}{2}w^{3} + 2w^{2} - \frac{1}{2}w - 2]$ $\phantom{-}2e$
31 $[31, 31, -w^{3} + w^{2} + 6w - 1]$ $-2$
31 $[31, 31, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $-2$
43 $[43, 43, \frac{1}{2}w^{3} - w^{2} - \frac{9}{2}w + 2]$ $\phantom{-}e - 2$
67 $[67, 67, w^{2} - w - 5]$ $-3e + 2$
67 $[67, 67, -\frac{1}{2}w^{3} + \frac{11}{2}w + 2]$ $\phantom{-}3e - 2$
73 $[73, 73, w^{2} + w + 1]$ $-3e + 8$
79 $[79, 79, \frac{1}{2}w^{3} + w^{2} - \frac{5}{2}w - 2]$ $-2e + 2$
81 $[81, 3, -3]$ $-2e + 4$
83 $[83, 83, 2w^{3} - 2w^{2} - 12w + 5]$ $-2e + 6$
83 $[83, 83, -\frac{1}{2}w^{3} - w^{2} + \frac{1}{2}w + 2]$ $-e - 6$
89 $[89, 89, -\frac{3}{2}w^{3} + 2w^{2} + \frac{17}{2}w - 2]$ $-e$
89 $[89, 89, \frac{3}{2}w^{3} - 2w^{2} - \frac{21}{2}w + 2]$ $-2e + 12$
97 $[97, 97, \frac{1}{2}w^{3} - w^{2} - \frac{1}{2}w - 2]$ $-e + 8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$
$2$ $[2, 2, -\frac{1}{2}w^{3} + w^{2} + \frac{3}{2}w]$ $-1$