Properties

Label 4.4.15125.1-5.1-b
Base field 4.4.15125.1
Weight $[2, 2, 2, 2]$
Level norm $5$
Level $[5, 5, 4w^{3} + 7w^{2} - 37w - 45]$
Dimension $4$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.15125.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 14x^{2} + 14x + 31\); narrow class number \(4\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[5, 5, 4w^{3} + 7w^{2} - 37w - 45]$
Dimension: $4$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} - 60x^{2} + 720\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, 4w^{3} + 7w^{2} - 37w - 45]$ $-1$
11 $[11, 11, 2w^{3} + 3w^{2} - 18w - 16]$ $-\frac{1}{6}e^{2} + 8$
11 $[11, 11, -w + 2]$ $\phantom{-}\frac{1}{6}e^{2} - 2$
16 $[16, 2, 2]$ $-3$
19 $[19, 19, 4w^{3} + 7w^{2} - 36w - 45]$ $\phantom{-}e$
19 $[19, 19, -w^{3} - w^{2} + 9w + 3]$ $-e$
19 $[19, 19, -2w^{3} - 4w^{2} + 17w + 23]$ $-\frac{1}{12}e^{3} + 3e$
19 $[19, 19, w^{3} + 2w^{2} - 10w - 10]$ $\phantom{-}\frac{1}{12}e^{3} - 3e$
29 $[29, 29, -w - 2]$ $-e$
29 $[29, 29, -w^{3} - 2w^{2} + 8w + 15]$ $\phantom{-}e$
29 $[29, 29, 2w^{3} + 3w^{2} - 18w - 20]$ $-\frac{1}{12}e^{3} + 3e$
29 $[29, 29, -3w^{3} - 5w^{2} + 27w + 28]$ $\phantom{-}\frac{1}{12}e^{3} - 3e$
31 $[31, 31, 3w^{3} + 5w^{2} - 27w - 31]$ $-\frac{1}{6}e^{2} + 8$
31 $[31, 31, -3w^{3} - 5w^{2} + 27w + 30]$ $\phantom{-}\frac{1}{6}e^{2} - 2$
31 $[31, 31, -2w^{3} - 3w^{2} + 18w + 17]$ $-\frac{1}{6}e^{2} + 8$
31 $[31, 31, 2w^{3} + 3w^{2} - 18w - 18]$ $\phantom{-}\frac{1}{6}e^{2} - 2$
71 $[71, 71, -w^{3} - 2w^{2} + 10w + 8]$ $-e^{2} + 32$
71 $[71, 71, 4w^{3} + 8w^{2} - 35w - 50]$ $\phantom{-}e^{2} - 28$
71 $[71, 71, -4w^{3} - 7w^{2} + 36w + 47]$ $\phantom{-}e^{2} - 28$
71 $[71, 71, -w^{3} - 2w^{2} + 8w + 17]$ $-e^{2} + 32$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, 4w^{3} + 7w^{2} - 37w - 45]$ $1$