Properties

Label 4.4.14272.1-81.1-c
Base field 4.4.14272.1
Weight $[2, 2, 2, 2]$
Level norm $81$
Level $[81, 3, 3]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 4.4.14272.1

Generator \(w\), with minimal polynomial \(x^4 - 2 x^3 - 5 x^2 + 2 x + 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[81, 3, 3]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $98$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}1$
4 $[4, 2, -w^3 + 3 w^2 + w - 2]$ $\phantom{-}0$
11 $[11, 11, -w^3 + 3 w^2 + 2 w - 5]$ $\phantom{-}0$
13 $[13, 13, w^3 - 2 w^2 - 4 w + 2]$ $\phantom{-}2$
13 $[13, 13, -w + 2]$ $\phantom{-}2$
17 $[17, 17, w^3 - 3 w^2 - 2 w + 2]$ $\phantom{-}0$
19 $[19, 19, -w^2 + w + 4]$ $-2$
19 $[19, 19, w^3 - 2 w^2 - 3 w + 2]$ $\phantom{-}4$
23 $[23, 23, w^2 - 2 w - 1]$ $\phantom{-}8$
27 $[27, 3, w^3 - 2 w^2 - 5 w - 1]$ $\phantom{-}1$
29 $[29, 29, -w^3 + 2 w^2 + 5 w - 1]$ $-8$
37 $[37, 37, -w^3 + 2 w^2 + 5 w - 4]$ $\phantom{-}2$
41 $[41, 41, 2 w^3 - 5 w^2 - 6 w + 4]$ $-4$
53 $[53, 53, w^3 - 2 w^2 - 3 w - 2]$ $-2$
59 $[59, 59, w - 4]$ $-8$
67 $[67, 67, 2 w^2 - 3 w - 8]$ $\phantom{-}2$
73 $[73, 73, 2 w^3 - 5 w^2 - 6 w + 5]$ $\phantom{-}2$
89 $[89, 89, -2 w^3 + 6 w^2 + 5 w - 7]$ $\phantom{-}0$
97 $[97, 97, -2 w^3 + 6 w^2 + 3 w - 7]$ $-18$
97 $[97, 97, -w^3 + 3 w^2 + 3 w - 1]$ $-2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w]$ $-1$
$27$ $[27, 3, w^3 - 2 w^2 - 5 w - 1]$ $-1$