Properties

Label 4.4.14272.1-16.1-b
Base field 4.4.14272.1
Weight $[2, 2, 2, 2]$
Level norm $16$
Level $[16, 2, 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.14272.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 5x^{2} + 2x + 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[16, 2, 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $22$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}0$
4 $[4, 2, -w^{3} + 3w^{2} + w - 2]$ $\phantom{-}0$
11 $[11, 11, -w^{3} + 3w^{2} + 2w - 5]$ $-4$
13 $[13, 13, w^{3} - 2w^{2} - 4w + 2]$ $\phantom{-}6$
13 $[13, 13, -w + 2]$ $-2$
17 $[17, 17, w^{3} - 3w^{2} - 2w + 2]$ $\phantom{-}6$
19 $[19, 19, -w^{2} + w + 4]$ $-4$
19 $[19, 19, w^{3} - 2w^{2} - 3w + 2]$ $\phantom{-}0$
23 $[23, 23, w^{2} - 2w - 1]$ $\phantom{-}8$
27 $[27, 3, w^{3} - 2w^{2} - 5w - 1]$ $\phantom{-}8$
29 $[29, 29, -w^{3} + 2w^{2} + 5w - 1]$ $\phantom{-}6$
37 $[37, 37, -w^{3} + 2w^{2} + 5w - 4]$ $\phantom{-}6$
41 $[41, 41, 2w^{3} - 5w^{2} - 6w + 4]$ $-10$
53 $[53, 53, w^{3} - 2w^{2} - 3w - 2]$ $\phantom{-}6$
59 $[59, 59, w - 4]$ $-4$
67 $[67, 67, 2w^{2} - 3w - 8]$ $-4$
73 $[73, 73, 2w^{3} - 5w^{2} - 6w + 5]$ $\phantom{-}14$
89 $[89, 89, -2w^{3} + 6w^{2} + 5w - 7]$ $\phantom{-}6$
97 $[97, 97, -2w^{3} + 6w^{2} + 3w - 7]$ $-14$
97 $[97, 97, -w^{3} + 3w^{2} + 3w - 1]$ $-10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, -w^{3} + 3w^{2} + w - 2]$ $1$