# Properties

 Label 4.4.14272.1-11.1-c Base field 4.4.14272.1 Weight $[2, 2, 2, 2]$ Level norm $11$ Level $[11, 11, -w^{3} + 3w^{2} + 2w - 5]$ Dimension $4$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.14272.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 5x^{2} + 2x + 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[11, 11, -w^{3} + 3w^{2} + 2w - 5]$ Dimension: $4$ CM: no Base change: no Newspace dimension: $12$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} - 17x^{2} + 36$$
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}0$
4 $[4, 2, -w^{3} + 3w^{2} + w - 2]$ $\phantom{-}e$
11 $[11, 11, -w^{3} + 3w^{2} + 2w - 5]$ $-1$
13 $[13, 13, w^{3} - 2w^{2} - 4w + 2]$ $\phantom{-}\frac{1}{3}e^{3} - \frac{14}{3}e$
13 $[13, 13, -w + 2]$ $-4$
17 $[17, 17, w^{3} - 3w^{2} - 2w + 2]$ $\phantom{-}\frac{1}{3}e^{3} - \frac{11}{3}e$
19 $[19, 19, -w^{2} + w + 4]$ $\phantom{-}4$
19 $[19, 19, w^{3} - 2w^{2} - 3w + 2]$ $\phantom{-}2e$
23 $[23, 23, w^{2} - 2w - 1]$ $\phantom{-}\frac{1}{3}e^{3} - \frac{14}{3}e$
27 $[27, 3, w^{3} - 2w^{2} - 5w - 1]$ $-\frac{1}{3}e^{3} + \frac{14}{3}e$
29 $[29, 29, -w^{3} + 2w^{2} + 5w - 1]$ $\phantom{-}\frac{2}{3}e^{3} - \frac{22}{3}e$
37 $[37, 37, -w^{3} + 2w^{2} + 5w - 4]$ $-2e$
41 $[41, 41, 2w^{3} - 5w^{2} - 6w + 4]$ $-e$
53 $[53, 53, w^{3} - 2w^{2} - 3w - 2]$ $-2e^{2} + 16$
59 $[59, 59, w - 4]$ $-2e^{2} + 16$
67 $[67, 67, 2w^{2} - 3w - 8]$ $-e^{2} + 4$
73 $[73, 73, 2w^{3} - 5w^{2} - 6w + 5]$ $-\frac{1}{3}e^{3} + \frac{23}{3}e$
89 $[89, 89, -2w^{3} + 6w^{2} + 5w - 7]$ $-e^{3} + 13e$
97 $[97, 97, -2w^{3} + 6w^{2} + 3w - 7]$ $-e^{2} + 18$
97 $[97, 97, -w^{3} + 3w^{2} + 3w - 1]$ $\phantom{-}\frac{1}{3}e^{3} - \frac{5}{3}e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$11$ $[11, 11, -w^{3} + 3w^{2} + 2w - 5]$ $1$