# Properties

 Label 4.4.13888.1-7.2-c Base field 4.4.13888.1 Weight $[2, 2, 2, 2]$ Level norm $7$ Level $[7, 7, w - 2]$ Dimension $1$ CM no Base change no

# Related objects

## Base field 4.4.13888.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 7x^{2} + 6x + 9$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[7, 7, w - 2]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $4$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{4}{3}w - 1]$ $\phantom{-}0$
7 $[7, 7, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - \frac{7}{3}w + 1]$ $\phantom{-}0$
7 $[7, 7, w - 2]$ $-1$
7 $[7, 7, w - 1]$ $\phantom{-}0$
9 $[9, 3, w]$ $-2$
9 $[9, 3, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{7}{3}w - 2]$ $\phantom{-}4$
23 $[23, 23, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{1}{3}w - 2]$ $\phantom{-}6$
23 $[23, 23, -\frac{2}{3}w^{3} + \frac{4}{3}w^{2} + \frac{11}{3}w - 4]$ $-6$
31 $[31, 31, -\frac{2}{3}w^{3} + \frac{1}{3}w^{2} + \frac{14}{3}w + 2]$ $\phantom{-}4$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{4}{3}w - 7]$ $\phantom{-}0$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{4}{3}w - 4]$ $\phantom{-}6$
47 $[47, 47, \frac{1}{3}w^{3} - \frac{5}{3}w^{2} - \frac{1}{3}w + 5]$ $\phantom{-}12$
47 $[47, 47, w^{2} - w - 4]$ $\phantom{-}0$
73 $[73, 73, -w^{3} + 3w^{2} + 4w - 8]$ $\phantom{-}12$
73 $[73, 73, -\frac{2}{3}w^{3} + \frac{7}{3}w^{2} - \frac{1}{3}w - 4]$ $\phantom{-}6$
73 $[73, 73, -w^{3} + w^{2} + 7w + 1]$ $-6$
73 $[73, 73, \frac{2}{3}w^{3} - \frac{4}{3}w^{2} - \frac{14}{3}w + 5]$ $\phantom{-}6$
79 $[79, 79, w^{2} - 5]$ $\phantom{-}8$
79 $[79, 79, -\frac{2}{3}w^{3} + \frac{7}{3}w^{2} + \frac{8}{3}w - 6]$ $\phantom{-}8$
97 $[97, 97, -\frac{2}{3}w^{3} + \frac{7}{3}w^{2} + \frac{5}{3}w - 4]$ $-8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$7$ $[7, 7, w - 2]$ $1$