Properties

Base field 4.4.13888.1
Weight [2, 2, 2, 2]
Level norm 28
Level $[28, 14, w^{2} - w - 5]$
Label 4.4.13888.1-28.1-f
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.13888.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 7x^{2} + 6x + 9\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[28, 14, w^{2} - w - 5]$
Label 4.4.13888.1-28.1-f
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 28

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} \) \(\mathstrut -\mathstrut x \) \(\mathstrut -\mathstrut 14\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{4}{3}w - 1]$ $-1$
7 $[7, 7, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - \frac{7}{3}w + 1]$ $\phantom{-}1$
7 $[7, 7, w - 2]$ $-2$
7 $[7, 7, w - 1]$ $\phantom{-}e$
9 $[9, 3, w]$ $\phantom{-}e$
9 $[9, 3, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{7}{3}w - 2]$ $-4$
23 $[23, 23, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{1}{3}w - 2]$ $\phantom{-}0$
23 $[23, 23, -\frac{2}{3}w^{3} + \frac{4}{3}w^{2} + \frac{11}{3}w - 4]$ $-e + 2$
31 $[31, 31, -\frac{2}{3}w^{3} + \frac{1}{3}w^{2} + \frac{14}{3}w + 2]$ $-e - 2$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{4}{3}w - 7]$ $-6$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{4}{3}w - 4]$ $-e + 8$
47 $[47, 47, \frac{1}{3}w^{3} - \frac{5}{3}w^{2} - \frac{1}{3}w + 5]$ $-e + 2$
47 $[47, 47, w^{2} - w - 4]$ $-2e - 2$
73 $[73, 73, -w^{3} + 3w^{2} + 4w - 8]$ $\phantom{-}2$
73 $[73, 73, -\frac{2}{3}w^{3} + \frac{7}{3}w^{2} - \frac{1}{3}w - 4]$ $-3e + 4$
73 $[73, 73, -w^{3} + w^{2} + 7w + 1]$ $\phantom{-}2e - 6$
73 $[73, 73, \frac{2}{3}w^{3} - \frac{4}{3}w^{2} - \frac{14}{3}w + 5]$ $-4$
79 $[79, 79, w^{2} - 5]$ $-4e$
79 $[79, 79, -\frac{2}{3}w^{3} + \frac{7}{3}w^{2} + \frac{8}{3}w - 6]$ $-2$
97 $[97, 97, -\frac{2}{3}w^{3} + \frac{7}{3}w^{2} + \frac{5}{3}w - 4]$ $-e - 12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{4}{3}w - 1]$ $1$
7 $[7, 7, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - \frac{7}{3}w + 1]$ $-1$