Properties

 Label 4.4.13824.1-1.1-a Base field 4.4.13824.1 Weight $[2, 2, 2, 2]$ Level norm $1$ Level $[1, 1, 1]$ Dimension $2$ CM yes Base change yes

Related objects

• L-function not available

Base field 4.4.13824.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} + 6$$; narrow class number $$2$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2, 2]$ Level: $[1, 1, 1]$ Dimension: $2$ CM: yes Base change: yes Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - 4x - 20$$
Norm Prime Eigenvalue
2 $[2, 2, -w^{2} + w + 2]$ $\phantom{-}0$
3 $[3, 3, w^{2} - w - 3]$ $\phantom{-}0$
11 $[11, 11, -w^{2} + w + 1]$ $\phantom{-}0$
11 $[11, 11, -w^{2} - w + 1]$ $\phantom{-}0$
13 $[13, 13, w^{3} - 4w + 1]$ $\phantom{-}e$
13 $[13, 13, -w^{3} + 4w + 1]$ $\phantom{-}e$
25 $[25, 5, -w^{2} - 2w + 1]$ $\phantom{-}e$
25 $[25, 5, w^{2} - 2w - 1]$ $\phantom{-}e$
37 $[37, 37, w^{3} - 3w - 1]$ $-2e + 6$
37 $[37, 37, w^{3} - 3w + 1]$ $-2e + 6$
59 $[59, 59, w^{2} - w - 5]$ $\phantom{-}0$
59 $[59, 59, -w^{2} - w + 5]$ $\phantom{-}0$
61 $[61, 61, -w^{3} + w^{2} + 4w - 7]$ $-2e + 6$
61 $[61, 61, w^{3} - 3w^{2} - 6w + 11]$ $-2e + 6$
73 $[73, 73, 2w^{2} - w - 5]$ $-3e + 8$
73 $[73, 73, 2w - 1]$ $\phantom{-}e$
73 $[73, 73, -2w - 1]$ $\phantom{-}e$
73 $[73, 73, 2w^{2} + w - 5]$ $-3e + 8$
83 $[83, 83, 2w^{3} + w^{2} - 9w - 7]$ $\phantom{-}0$
83 $[83, 83, -2w^{3} + w^{2} + 7w + 1]$ $\phantom{-}0$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is $$(1)$$.