Properties

Label 4.4.13768.1-17.1-d
Base field 4.4.13768.1
Weight $[2, 2, 2, 2]$
Level norm $17$
Level $[17, 17, -w + 3]$
Dimension $15$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.13768.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 5x^{2} + 2x + 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[17, 17, -w + 3]$
Dimension: $15$
CM: no
Base change: no
Newspace dimension: $33$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{15} + x^{14} - 21x^{13} - 20x^{12} + 169x^{11} + 156x^{10} - 658x^{9} - 599x^{8} + 1297x^{7} + 1167x^{6} - 1241x^{5} - 1100x^{4} + 478x^{3} + 424x^{2} - 26x - 32\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}e$
3 $[3, 3, w + 1]$ $...$
4 $[4, 2, -w^{2} - w + 1]$ $...$
13 $[13, 13, -w^{2} + 3]$ $...$
17 $[17, 17, -w + 3]$ $\phantom{-}1$
27 $[27, 3, w^{3} - 2w^{2} - 3w + 5]$ $...$
31 $[31, 31, -w^{2} - 2w + 1]$ $...$
41 $[41, 41, -w^{2} + 5]$ $...$
43 $[43, 43, w^{3} - w^{2} - 5w - 1]$ $...$
43 $[43, 43, w^{3} - w^{2} - 3w + 1]$ $...$
59 $[59, 59, -w - 3]$ $...$
59 $[59, 59, -2w^{3} + 2w^{2} + 9w - 5]$ $...$
59 $[59, 59, -w^{3} - 3w^{2} - w + 3]$ $...$
59 $[59, 59, w^{3} - 7w + 1]$ $...$
61 $[61, 61, -w^{3} + w^{2} + 2w + 5]$ $...$
61 $[61, 61, -w^{3} - w^{2} + 4w + 3]$ $...$
67 $[67, 67, 4w^{3} - 4w^{2} - 18w + 7]$ $...$
73 $[73, 73, -2w^{3} + 6w - 3]$ $...$
73 $[73, 73, -2w + 3]$ $...$
97 $[97, 97, w^{3} - 2w^{2} - 5w + 3]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$17$ $[17, 17, -w + 3]$ $-1$