/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([2, 2, -5, -1, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([16, 2, 2]) primes_array = [ [2, 2, -w],\ [3, 3, w + 1],\ [4, 2, -w^2 - w + 1],\ [13, 13, -w^2 + 3],\ [17, 17, -w + 3],\ [27, 3, w^3 - 2*w^2 - 3*w + 5],\ [31, 31, -w^2 - 2*w + 1],\ [41, 41, -w^2 + 5],\ [43, 43, w^3 - w^2 - 5*w - 1],\ [43, 43, w^3 - w^2 - 3*w + 1],\ [59, 59, -w - 3],\ [59, 59, -2*w^3 + 2*w^2 + 9*w - 5],\ [59, 59, -w^3 - 3*w^2 - w + 3],\ [59, 59, w^3 - 7*w + 1],\ [61, 61, -w^3 + w^2 + 2*w + 5],\ [61, 61, -w^3 - w^2 + 4*w + 3],\ [67, 67, 4*w^3 - 4*w^2 - 18*w + 7],\ [73, 73, -2*w^3 + 6*w - 3],\ [73, 73, -2*w + 3],\ [97, 97, w^3 - 2*w^2 - 5*w + 3],\ [101, 101, w^3 + w^2 - 5*w - 7],\ [101, 101, -w^3 - w^2 + 4*w + 5],\ [103, 103, 2*w^3 - 8*w - 1],\ [103, 103, w^2 - 2*w - 7],\ [109, 109, -w^3 + 2*w^2 + 3*w - 7],\ [113, 113, -w^3 + w^2 + 6*w - 3],\ [127, 127, -w^3 + w^2 + 6*w - 1],\ [131, 131, -2*w^3 + 3*w^2 + 10*w - 11],\ [137, 137, w^3 + w^2 - 6*w - 5],\ [139, 139, -3*w^3 + 2*w^2 + 15*w - 1],\ [149, 149, w^3 - 3*w^2 - 4*w + 11],\ [149, 149, -w^3 + 5*w - 1],\ [157, 157, -2*w^3 + 3*w^2 + 6*w - 1],\ [163, 163, 2*w^2 - 3],\ [163, 163, -2*w^3 + 2*w^2 + 7*w - 5],\ [167, 167, -2*w^3 + 2*w^2 + 8*w - 3],\ [167, 167, -2*w^2 + 2*w + 9],\ [173, 173, 2*w^3 - w^2 - 8*w + 3],\ [173, 173, 2*w^3 - 3*w^2 - 6*w + 3],\ [181, 181, 2*w^3 - 3*w^2 - 8*w + 5],\ [191, 191, -2*w^3 + w^2 + 10*w - 1],\ [193, 193, -w^3 + 3*w^2 + 2*w - 7],\ [193, 193, w^3 - 3*w - 3],\ [193, 193, 2*w^2 - 2*w - 3],\ [193, 193, w^3 - 7*w - 1],\ [197, 197, w^2 - 2*w - 5],\ [211, 211, w^2 - 4*w - 1],\ [229, 229, -w^3 + w^2 + 6*w - 7],\ [229, 229, -4*w^3 + 6*w^2 + 16*w - 13],\ [233, 233, 3*w^2 + 2*w - 5],\ [233, 233, 2*w^3 - 2*w^2 - 11*w + 7],\ [239, 239, -w^3 + w^2 + 7*w + 1],\ [241, 241, w^3 - 3*w^2 - 2*w + 9],\ [241, 241, w^3 + w^2 - 9*w - 5],\ [251, 251, 2*w^3 - 6*w + 1],\ [271, 271, 2*w^3 - w^2 - 8*w - 1],\ [271, 271, -2*w^2 + w + 7],\ [281, 281, 2*w^3 + 2*w^2 - 5*w - 1],\ [293, 293, w^3 + w^2 - 5*w - 1],\ [293, 293, -3*w + 7],\ [307, 307, -w^3 - 2*w^2 + 3*w + 5],\ [311, 311, -w^3 + 3*w^2 + 4*w - 7],\ [313, 313, 2*w^2 - 2*w - 5],\ [317, 317, -2*w^3 + 4*w^2 + 7*w - 13],\ [317, 317, -2*w^3 + 3*w^2 + 8*w - 11],\ [337, 337, 3*w^3 + 2*w^2 - 7*w + 1],\ [347, 347, 2*w^3 - 2*w^2 - 11*w + 1],\ [349, 349, -5*w^3 + 6*w^2 + 23*w - 13],\ [359, 359, 2*w^3 - 2*w^2 - 12*w + 9],\ [359, 359, -2*w^3 + 8*w + 5],\ [367, 367, -4*w^3 + 4*w^2 + 19*w - 5],\ [367, 367, 2*w^3 + w^2 - 10*w - 7],\ [383, 383, 2*w^3 - 2*w^2 - 7*w + 1],\ [389, 389, 2*w^2 - w - 5],\ [397, 397, 3*w^3 - 4*w^2 - 11*w + 9],\ [397, 397, 3*w^3 - 3*w^2 - 12*w + 7],\ [397, 397, 2*w^3 - 4*w^2 - 8*w + 15],\ [397, 397, -w^3 + 3*w^2 + w - 7],\ [409, 409, -w^3 - w^2 + 9*w - 1],\ [419, 419, 2*w^2 - 3*w - 7],\ [419, 419, 4*w^3 - 3*w^2 - 18*w + 3],\ [431, 431, -3*w^3 + w^2 + 17*w - 1],\ [431, 431, 3*w^3 - w^2 - 16*w - 1],\ [433, 433, -2*w^3 + 5*w^2 + 8*w - 19],\ [443, 443, 3*w - 5],\ [449, 449, -2*w^3 + 2*w^2 + 9*w - 9],\ [449, 449, -5*w^3 + 8*w^2 + 19*w - 17],\ [457, 457, -3*w^3 + 3*w^2 + 13*w - 9],\ [457, 457, -3*w^3 + 2*w^2 + 13*w + 1],\ [457, 457, -2*w^3 + w^2 + 8*w + 7],\ [457, 457, 3*w^3 - 3*w^2 - 15*w + 7],\ [461, 461, -2*w^3 + 2*w^2 + 9*w + 1],\ [479, 479, -w^3 + w^2 + 7*w - 9],\ [487, 487, -w^3 - w^2 + w - 3],\ [499, 499, -2*w^3 + 7*w - 3],\ [499, 499, -5*w^3 + 7*w^2 + 20*w - 15],\ [541, 541, -3*w^3 + 4*w^2 + 13*w - 7],\ [547, 547, -w^3 - w^2 + 3*w + 5],\ [557, 557, 4*w - 1],\ [563, 563, 2*w^3 - w^2 - 6*w - 1],\ [571, 571, w^3 - w^2 - w - 3],\ [587, 587, -2*w^3 + 2*w^2 + 10*w + 1],\ [593, 593, 2*w^3 - 2*w^2 - 6*w + 3],\ [613, 613, -5*w^3 + 5*w^2 + 23*w - 7],\ [613, 613, -w^3 + w^2 + 5*w - 7],\ [617, 617, -w - 5],\ [619, 619, -3*w^3 + 4*w^2 + 11*w - 7],\ [625, 5, -5],\ [643, 643, -3*w^3 + 3*w^2 + 14*w - 9],\ [643, 643, -3*w^2 - 4*w + 1],\ [653, 653, -w^3 + w^2 + 9*w + 3],\ [653, 653, -4*w^2 + 6*w + 11],\ [659, 659, -w^2 - 4*w + 1],\ [661, 661, -3*w^3 + 3*w^2 + 15*w - 5],\ [661, 661, w^3 + w^2 - 7*w - 11],\ [673, 673, 2*w^3 - 3*w^2 - 12*w + 1],\ [673, 673, -2*w^3 + w^2 + 10*w - 3],\ [683, 683, -w^3 - 2*w^2 + 5*w + 11],\ [691, 691, 4*w^3 - 3*w^2 - 18*w + 5],\ [709, 709, w^3 - 3*w - 7],\ [719, 719, 2*w^3 - 8*w + 1],\ [727, 727, -3*w^3 + 6*w^2 + 13*w - 19],\ [733, 733, w^3 - w^2 + 3],\ [739, 739, -w^3 + w^2 + 3*w - 7],\ [751, 751, -w^2 - 3],\ [773, 773, 2*w^3 - 2*w^2 - 11*w + 3],\ [787, 787, w^3 - w^2 - 3*w - 5],\ [797, 797, -2*w^3 + 2*w^2 + 5*w - 1],\ [797, 797, -7*w^3 + 8*w^2 + 31*w - 15],\ [809, 809, 4*w^3 - 6*w^2 - 17*w + 13],\ [809, 809, 3*w^2 - 4*w - 5],\ [811, 811, 2*w^2 + 4*w + 3],\ [811, 811, -3*w^3 + 3*w^2 + 12*w - 5],\ [821, 821, 2*w^3 - 10*w - 1],\ [821, 821, 6*w^3 - 10*w^2 - 24*w + 29],\ [823, 823, -5*w^3 + 3*w^2 + 24*w - 1],\ [823, 823, w^3 + w^2 + w + 3],\ [827, 827, -4*w^3 + 3*w^2 + 16*w - 7],\ [829, 829, 2*w^3 - 4*w^2 - 6*w + 11],\ [841, 29, w^3 - 3*w^2 - 5*w + 3],\ [841, 29, -3*w^3 + 3*w^2 + 13*w - 1],\ [857, 857, -4*w^3 + 6*w^2 + 13*w - 7],\ [857, 857, -3*w^3 + w^2 + 15*w + 1],\ [859, 859, -4*w^2 + 3*w + 17],\ [863, 863, -4*w^3 + 8*w^2 + 14*w - 21],\ [877, 877, -w^3 - w^2 + 6*w - 1],\ [881, 881, -5*w - 1],\ [883, 883, -4*w^3 + 4*w^2 + 21*w - 13],\ [883, 883, 2*w^3 - 11*w - 1],\ [887, 887, -3*w^3 - w^2 + 8*w - 5],\ [907, 907, w^3 - w^2 - w + 5],\ [911, 911, 2*w^2 - 5*w - 5],\ [919, 919, -w^3 + 3*w^2 + 6*w - 3],\ [919, 919, 5*w^2 + 4*w - 9],\ [929, 929, w^3 + 3*w^2 - 8*w - 17],\ [937, 937, -4*w^3 + 4*w^2 + 17*w - 7],\ [953, 953, -2*w^3 + 2*w^2 + 7*w + 5],\ [953, 953, 3*w^3 - 4*w^2 - 11*w + 3],\ [967, 967, 4*w^3 - 2*w^2 - 17*w + 3],\ [971, 971, w^3 - 3*w^2 - 8*w + 1],\ [983, 983, -2*w^3 - 2*w^2 + 12*w + 13],\ [991, 991, -2*w^3 - 2*w^2 + 8*w + 7],\ [991, 991, w^3 + w^2 - 10*w + 1]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x^5 - 2*x^4 - 10*x^3 + 18*x^2 + 14*x - 24 K. = NumberField(heckePol) hecke_eigenvalues_array = [0, e, 1, 2, e^4 - e^3 - 10*e^2 + 5*e + 14, -e^4 + 12*e^2 + e - 20, e^4 - 10*e^2 - 2*e + 16, -2*e^4 + e^3 + 22*e^2 - 5*e - 34, 2*e^4 - 2*e^3 - 19*e^2 + 12*e + 24, e^4 - e^3 - 12*e^2 + 5*e + 24, 2*e^4 - e^3 - 22*e^2 + 3*e + 36, -e^4 + e^3 + 10*e^2 - 7*e - 12, -e^2 + 4, -e^4 + 10*e^2 + 4*e - 16, -2*e^4 + 22*e^2 + 2*e - 38, e^4 - 12*e^2 + 22, -e^4 + 2*e^3 + 10*e^2 - 12*e - 12, -3*e^2 + 2*e + 18, 2*e^2 + e - 10, -2*e^4 + 21*e^2 + 6*e - 38, 2*e^4 - 2*e^3 - 18*e^2 + 10*e + 14, -e^4 + 10*e^2 - 2*e - 10, 2*e, 2*e^4 - 22*e^2 - 6*e + 40, -3*e^4 + 2*e^3 + 30*e^2 - 10*e - 38, -2*e^4 + 22*e^2 - e - 34, e^4 - 2*e^3 - 8*e^2 + 12*e + 8, -3*e^4 + 2*e^3 + 30*e^2 - 9*e - 44, 3*e^4 - 2*e^3 - 32*e^2 + 15*e + 46, -2*e^4 + 2*e^3 + 21*e^2 - 14*e - 32, 2*e^2 - 2*e - 6, -2*e^4 + 20*e^2 + 2*e - 26, -2*e^2 + 22, -e^4 + e^3 + 6*e^2 - 3*e + 8, -2*e^4 + 2*e^3 + 22*e^2 - 11*e - 36, -2*e^4 + 2*e^3 + 20*e^2 - 14*e - 24, 2*e^4 - 2*e^3 - 22*e^2 + 6*e + 40, 2*e^4 - 2*e^3 - 20*e^2 + 14*e + 18, -2*e^4 + 2*e^3 + 20*e^2 - 16*e - 22, 3*e^4 - 2*e^3 - 32*e^2 + 8*e + 58, -2*e^2 + 2*e, -2*e^4 + 2*e^3 + 20*e^2 - 7*e - 26, e^4 - 2*e^3 - 12*e^2 + 8*e + 34, -e^4 - e^3 + 14*e^2 + 13*e - 26, -2*e^4 + 23*e^2 - 46, 4*e^4 - 2*e^3 - 42*e^2 + 12*e + 58, 2*e^4 + e^3 - 24*e^2 - 9*e + 44, 2*e^3 - 16*e - 2, -4*e + 6, -3*e^4 + 3*e^3 + 32*e^2 - 17*e - 42, 5*e^4 - 2*e^3 - 56*e^2 + 8*e + 90, 2*e^3 - 20*e, -4*e^4 + 2*e^3 + 41*e^2 - 6*e - 70, e^4 - 14*e^2 - 5*e + 38, -e^2 - 2*e, 2*e^4 + 2*e^3 - 24*e^2 - 14*e + 48, -2*e^4 + 2*e^3 + 20*e^2 - 6*e - 24, e^4 - 10*e^2 - 11*e + 14, 2*e^4 - 2*e^3 - 22*e^2 + 16*e + 30, -2*e^4 + 26*e^2 - 54, -3*e^4 + 2*e^3 + 34*e^2 - 12*e - 52, -2*e^4 + 2*e^3 + 18*e^2 - 10*e - 8, 2*e^4 - 2*e^3 - 20*e^2 + 19*e + 30, 3*e^4 - 2*e^3 - 30*e^2 + 10*e + 46, 2*e^4 - 22*e^2 + 2*e + 30, -e^4 - 2*e^3 + 12*e^2 + 17*e - 18, -4*e^4 + 2*e^3 + 41*e^2 - 8*e - 52, 4*e^4 - 2*e^3 - 48*e^2 + 6*e + 90, -e^4 + 2*e^3 + 10*e^2 - 20*e, -e^4 + 4*e^3 + 8*e^2 - 26*e, 4*e^4 - 2*e^3 - 42*e^2 + 10*e + 56, 4*e^4 - 2*e^3 - 42*e^2 + 14*e + 64, -5*e^4 + 2*e^3 + 58*e^2 - 10*e - 96, 2*e^4 - 24*e^2 + 4*e + 54, -2*e^3 + 2*e^2 + 22*e - 2, -2*e^4 + 2*e^3 + 22*e^2 - 18*e - 38, 4*e^4 - 4*e^3 - 42*e^2 + 34*e + 58, -e^4 + 2*e^3 + 12*e^2 - 20*e - 18, 3*e^3 - 6*e^2 - 23*e + 22, -2*e^4 - e^3 + 22*e^2 + 7*e - 44, 5*e^4 - 2*e^3 - 50*e^2 + 12*e + 56, e^4 - 2*e^3 - 8*e^2 + 8*e + 16, -6*e^4 + 2*e^3 + 68*e^2 - 4*e - 120, 4*e^4 - e^3 - 44*e^2 - e + 86, 2*e^4 - 4*e^3 - 15*e^2 + 24*e + 8, -2*e^4 + 26*e^2 - e - 74, -4*e^4 + 41*e^2 + 2*e - 54, 3*e^4 - 42*e^2 - 5*e + 94, 5*e^4 - 4*e^3 - 54*e^2 + 25*e + 78, 2*e^4 - 2*e^3 - 21*e^2 + 10*e + 34, e^4 + 2*e^3 - 12*e^2 - 16*e + 18, 4*e^4 - 4*e^3 - 44*e^2 + 26*e + 54, -5*e^4 + 2*e^3 + 54*e^2 - 6*e - 96, -7*e^4 + 6*e^3 + 70*e^2 - 30*e - 88, 3*e^4 - 2*e^3 - 30*e^2 + 5*e + 56, 4*e^4 - 40*e^2 - 8*e + 64, -2*e^4 + 16*e^2 - 2*e + 2, -2*e^4 + 20*e^2 - 40, -e^4 + 8*e^2 - 2*e + 10, 2*e^4 - 16*e^2 + 4*e - 8, -2*e^4 + 4*e^3 + 17*e^2 - 22*e - 4, 3*e^4 - 32*e^2 - 3*e + 56, 2*e^3 - 7*e^2 - 16*e + 18, -2*e^4 + 22*e^2 + 2*e - 26, 4*e^4 - 4*e^3 - 42*e^2 + 22*e + 58, -2*e^4 + 3*e^3 + 24*e^2 - 21*e - 58, -6*e^4 + 6*e^3 + 58*e^2 - 29*e - 72, e^4 - 16*e^2 + 50, -2*e^4 + 23*e^2 + 6*e - 52, 3*e^4 + e^3 - 32*e^2 - 13*e + 52, -2*e^4 + 28*e^2 - 4*e - 58, -4*e^3 + 4*e^2 + 24*e - 6, -7*e^4 + 5*e^3 + 76*e^2 - 13*e - 136, 6*e^2 - 2*e - 14, 3*e^4 - 2*e^3 - 34*e^2 + 4*e + 58, -4*e^4 + 3*e^3 + 34*e^2 - 11*e - 26, 6*e^4 - 4*e^3 - 61*e^2 + 22*e + 90, -4*e^4 + 2*e^3 + 41*e^2 - 18*e - 60, -e^4 + 4*e^3 + 10*e^2 - 24*e - 8, -8*e^4 + 4*e^3 + 90*e^2 - 20*e - 142, 4*e^4 - 2*e^3 - 42*e^2 + 8*e + 56, 6*e^4 - 70*e^2 - 8*e + 128, 4*e^4 - 6*e^3 - 36*e^2 + 32*e + 38, 3*e^4 + 2*e^3 - 34*e^2 - 21*e + 64, -4*e^4 - 2*e^3 + 46*e^2 + 16*e - 72, 2*e^4 - 4*e^3 - 24*e^2 + 20*e + 54, 2*e^4 - e^3 - 22*e^2 + 7*e + 52, 2*e^4 - 22*e^2 + 2*e + 30, -4*e^4 + 4*e^3 + 42*e^2 - 26*e - 58, -10*e^4 + 4*e^3 + 105*e^2 - 24*e - 150, -2*e^4 - e^3 + 22*e^2 + 17*e - 42, 2*e^4 - 28*e^2 + 4*e + 72, -5*e^4 + 8*e^3 + 50*e^2 - 52*e - 68, 4*e^3 - 6*e^2 - 28*e + 18, -4*e^4 + 4*e^3 + 40*e^2 - 28*e - 78, 4*e^4 - 44*e^2 + 2*e + 64, e^4 + 2*e^3 - 12*e^2 - 18*e + 32, 2*e^3 + e^2 - 4*e - 20, -4*e^4 + 2*e^3 + 44*e^2 - 24*e - 70, -e^4 + 4*e^3 + 4*e^2 - 32*e - 6, 8*e^4 - 2*e^3 - 89*e^2 + 4*e + 162, e^4 + 2*e^3 - 12*e^2 - 7*e + 22, e^4 - 10*e^2 - e - 2, -7*e^2 + 2*e + 40, 4*e^3 - 6*e^2 - 30*e + 32, 4*e^2 - 12*e - 26, 2*e^4 - 4*e^3 - 16*e^2 + 20*e - 14, -8*e^4 + 4*e^3 + 84*e^2 - 8*e - 136, 5*e^4 - 2*e^3 - 58*e^2 + 5*e + 112, 8*e^4 - 6*e^3 - 84*e^2 + 22*e + 120, -8*e^4 + 5*e^3 + 76*e^2 - 25*e - 88, 2*e^4 - 18*e^2 - 18*e + 16, -2*e^4 + 6*e^3 + 18*e^2 - 36*e - 8, 3*e^4 - 2*e^3 - 34*e^2 + 6*e + 56, 4*e^4 - 45*e^2 - 20*e + 82, 6*e^4 - 5*e^3 - 58*e^2 + 29*e + 54, -4*e^4 + e^3 + 48*e^2 - 11*e - 106, -4*e^4 + 4*e^3 + 44*e^2 - 20*e - 54, -4*e^4 + 38*e^2 + 6*e - 56, -2*e^3 - 2*e^2 + 25*e, 2*e^4 - 4*e^3 - 12*e^2 + 34*e - 8, 3*e^4 - 4*e^3 - 26*e^2 + 34*e + 16, -6*e^4 + 4*e^3 + 64*e^2 - 38*e - 88] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([2, 2, -w])] = -1 AL_eigenvalues[ZF.ideal([4, 2, -w^2 - w + 1])] = -1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]