# Properties

 Label 4.4.13768.1-16.1-c Base field 4.4.13768.1 Weight $[2, 2, 2, 2]$ Level norm $16$ Level $[16, 2, 2]$ Dimension $5$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.13768.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 5x^{2} + 2x + 2$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[16, 2, 2]$ Dimension: $5$ CM: no Base change: no Newspace dimension: $7$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{5} - 2x^{4} - 10x^{3} + 18x^{2} + 14x - 24$$
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $\phantom{-}e$
4 $[4, 2, -w^{2} - w + 1]$ $\phantom{-}1$
13 $[13, 13, -w^{2} + 3]$ $\phantom{-}2$
17 $[17, 17, -w + 3]$ $\phantom{-}e^{4} - e^{3} - 10e^{2} + 5e + 14$
27 $[27, 3, w^{3} - 2w^{2} - 3w + 5]$ $-e^{4} + 12e^{2} + e - 20$
31 $[31, 31, -w^{2} - 2w + 1]$ $\phantom{-}e^{4} - 10e^{2} - 2e + 16$
41 $[41, 41, -w^{2} + 5]$ $-2e^{4} + e^{3} + 22e^{2} - 5e - 34$
43 $[43, 43, w^{3} - w^{2} - 5w - 1]$ $\phantom{-}2e^{4} - 2e^{3} - 19e^{2} + 12e + 24$
43 $[43, 43, w^{3} - w^{2} - 3w + 1]$ $\phantom{-}e^{4} - e^{3} - 12e^{2} + 5e + 24$
59 $[59, 59, -w - 3]$ $\phantom{-}2e^{4} - e^{3} - 22e^{2} + 3e + 36$
59 $[59, 59, -2w^{3} + 2w^{2} + 9w - 5]$ $-e^{4} + e^{3} + 10e^{2} - 7e - 12$
59 $[59, 59, -w^{3} - 3w^{2} - w + 3]$ $-e^{2} + 4$
59 $[59, 59, w^{3} - 7w + 1]$ $-e^{4} + 10e^{2} + 4e - 16$
61 $[61, 61, -w^{3} + w^{2} + 2w + 5]$ $-2e^{4} + 22e^{2} + 2e - 38$
61 $[61, 61, -w^{3} - w^{2} + 4w + 3]$ $\phantom{-}e^{4} - 12e^{2} + 22$
67 $[67, 67, 4w^{3} - 4w^{2} - 18w + 7]$ $-e^{4} + 2e^{3} + 10e^{2} - 12e - 12$
73 $[73, 73, -2w^{3} + 6w - 3]$ $-3e^{2} + 2e + 18$
73 $[73, 73, -2w + 3]$ $\phantom{-}2e^{2} + e - 10$
97 $[97, 97, w^{3} - 2w^{2} - 5w + 3]$ $-2e^{4} + 21e^{2} + 6e - 38$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w]$ $-1$
$4$ $[4, 2, -w^{2} - w + 1]$ $-1$