Properties

Label 4.4.13525.1-9.1-a
Base field 4.4.13525.1
Weight $[2, 2, 2, 2]$
Level norm $9$
Level $[9, 3, \frac{2}{5}w^{3} - \frac{19}{5}w - \frac{3}{5}]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.13525.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 12x^{2} + 8x + 29\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[9, 3, \frac{2}{5}w^{3} - \frac{19}{5}w - \frac{3}{5}]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $9$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, -w + 2]$ $\phantom{-}1$
5 $[5, 5, -\frac{3}{5}w^{3} - w^{2} + \frac{26}{5}w + \frac{42}{5}]$ $\phantom{-}1$
9 $[9, 3, \frac{2}{5}w^{3} - \frac{19}{5}w - \frac{3}{5}]$ $\phantom{-}1$
9 $[9, 3, -\frac{1}{5}w^{3} + \frac{2}{5}w + \frac{4}{5}]$ $-2$
11 $[11, 11, -\frac{2}{5}w^{3} - w^{2} + \frac{14}{5}w + \frac{28}{5}]$ $\phantom{-}2$
11 $[11, 11, \frac{1}{5}w^{3} - w^{2} - \frac{7}{5}w + \frac{36}{5}]$ $-4$
16 $[16, 2, 2]$ $-5$
29 $[29, 29, -w]$ $-3$
29 $[29, 29, \frac{1}{5}w^{3} - \frac{12}{5}w + \frac{1}{5}]$ $\phantom{-}3$
41 $[41, 41, -\frac{2}{5}w^{3} - w^{2} + \frac{14}{5}w + \frac{38}{5}]$ $-3$
41 $[41, 41, -w^{2} + 10]$ $-7$
41 $[41, 41, \frac{11}{5}w^{3} + 3w^{2} - \frac{102}{5}w - \frac{149}{5}]$ $-7$
41 $[41, 41, -\frac{1}{5}w^{3} + w^{2} + \frac{7}{5}w - \frac{26}{5}]$ $-3$
49 $[49, 7, \frac{1}{5}w^{3} + w^{2} - \frac{12}{5}w - \frac{19}{5}]$ $\phantom{-}9$
49 $[49, 7, \frac{1}{5}w^{3} + w^{2} - \frac{12}{5}w - \frac{44}{5}]$ $-9$
59 $[59, 59, -\frac{4}{5}w^{3} - w^{2} + \frac{33}{5}w + \frac{36}{5}]$ $-4$
59 $[59, 59, -2w^{3} - 3w^{2} + 17w + 26]$ $\phantom{-}14$
61 $[61, 61, -\frac{1}{5}w^{3} + w^{2} + \frac{12}{5}w - \frac{51}{5}]$ $\phantom{-}13$
61 $[61, 61, \frac{4}{5}w^{3} + w^{2} - \frac{28}{5}w - \frac{41}{5}]$ $-5$
71 $[71, 71, \frac{1}{5}w^{3} + w^{2} - \frac{7}{5}w - \frac{49}{5}]$ $\phantom{-}10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$9$ $[9, 3, \frac{2}{5}w^{3} - \frac{19}{5}w - \frac{3}{5}]$ $-1$