# Properties

 Label 4.4.13525.1-11.1-a Base field 4.4.13525.1 Weight $[2, 2, 2, 2]$ Level norm $11$ Level $[11, 11, -\frac{2}{5}w^{3} - w^{2} + \frac{14}{5}w + \frac{28}{5}]$ Dimension $3$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.13525.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 12x^{2} + 8x + 29$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[11, 11, -\frac{2}{5}w^{3} - w^{2} + \frac{14}{5}w + \frac{28}{5}]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $10$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} - 4x^{2} - 5x + 22$$
Norm Prime Eigenvalue
5 $[5, 5, -w + 2]$ $\phantom{-}e$
5 $[5, 5, -\frac{3}{5}w^{3} - w^{2} + \frac{26}{5}w + \frac{42}{5}]$ $\phantom{-}0$
9 $[9, 3, \frac{2}{5}w^{3} - \frac{19}{5}w - \frac{3}{5}]$ $-e^{2} + 11$
9 $[9, 3, -\frac{1}{5}w^{3} + \frac{2}{5}w + \frac{4}{5}]$ $\phantom{-}e$
11 $[11, 11, -\frac{2}{5}w^{3} - w^{2} + \frac{14}{5}w + \frac{28}{5}]$ $-1$
11 $[11, 11, \frac{1}{5}w^{3} - w^{2} - \frac{7}{5}w + \frac{36}{5}]$ $-e^{2} + 10$
16 $[16, 2, 2]$ $\phantom{-}e^{2} - e - 7$
29 $[29, 29, -w]$ $\phantom{-}6$
29 $[29, 29, \frac{1}{5}w^{3} - \frac{12}{5}w + \frac{1}{5}]$ $\phantom{-}e^{2} - 2e - 5$
41 $[41, 41, -\frac{2}{5}w^{3} - w^{2} + \frac{14}{5}w + \frac{38}{5}]$ $\phantom{-}e + 4$
41 $[41, 41, -w^{2} + 10]$ $\phantom{-}e^{2} - 4e - 5$
41 $[41, 41, \frac{11}{5}w^{3} + 3w^{2} - \frac{102}{5}w - \frac{149}{5}]$ $\phantom{-}e^{2} - e - 5$
41 $[41, 41, -\frac{1}{5}w^{3} + w^{2} + \frac{7}{5}w - \frac{26}{5}]$ $-e^{2} - e + 15$
49 $[49, 7, \frac{1}{5}w^{3} + w^{2} - \frac{12}{5}w - \frac{19}{5}]$ $-2e^{2} + 4e + 16$
49 $[49, 7, \frac{1}{5}w^{3} + w^{2} - \frac{12}{5}w - \frac{44}{5}]$ $\phantom{-}e - 6$
59 $[59, 59, -\frac{4}{5}w^{3} - w^{2} + \frac{33}{5}w + \frac{36}{5}]$ $-3e^{2} + 2e + 21$
59 $[59, 59, -2w^{3} - 3w^{2} + 17w + 26]$ $\phantom{-}2e^{2} - 2e - 12$
61 $[61, 61, -\frac{1}{5}w^{3} + w^{2} + \frac{12}{5}w - \frac{51}{5}]$ $\phantom{-}2e - 6$
61 $[61, 61, \frac{4}{5}w^{3} + w^{2} - \frac{28}{5}w - \frac{41}{5}]$ $\phantom{-}3e^{2} - 4e - 17$
71 $[71, 71, \frac{1}{5}w^{3} + w^{2} - \frac{7}{5}w - \frac{49}{5}]$ $-2e^{2} + 6e + 9$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$11$ $[11, 11, -\frac{2}{5}w^{3} - w^{2} + \frac{14}{5}w + \frac{28}{5}]$ $1$