Properties

 Label 4.4.13025.1-20.3-b Base field 4.4.13025.1 Weight $[2, 2, 2, 2]$ Level norm $20$ Level $[20,10,\frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{13}{4}]$ Dimension $3$ CM no Base change no

Related objects

• L-function not available

Learn more about

Base field 4.4.13025.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 12x^{2} + 3x + 29$$; narrow class number $$1$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2, 2]$ Level: $[20,10,\frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{13}{4}]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $19$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} + x^{2} - 7x + 1$$
Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{2}w^{3} - 2w^{2} - 2w + \frac{15}{2}]$ $\phantom{-}1$
4 $[4, 2, -w^{2} + w + 8]$ $\phantom{-}e$
5 $[5, 5, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{1}{2}w - \frac{9}{4}]$ $\phantom{-}\frac{1}{2}e^{2} + e - \frac{3}{2}$
5 $[5, 5, \frac{1}{2}w^{3} - w^{2} - 4w + \frac{9}{2}]$ $\phantom{-}1$
19 $[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{21}{4}]$ $\phantom{-}\frac{1}{2}e^{2} + 2e - \frac{5}{2}$
19 $[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{41}{4}]$ $\phantom{-}2e + 2$
29 $[29, 29, w]$ $\phantom{-}2$
29 $[29, 29, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{1}{4}]$ $\phantom{-}\frac{1}{2}e^{2} - \frac{13}{2}$
29 $[29, 29, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{9}{4}]$ $-2e^{2} - 2e + 6$
29 $[29, 29, -\frac{1}{2}w^{3} + w^{2} + 4w - \frac{5}{2}]$ $\phantom{-}\frac{3}{2}e^{2} + e - \frac{5}{2}$
41 $[41, 41, \frac{3}{4}w^{3} - \frac{5}{2}w^{2} - \frac{7}{2}w + \frac{47}{4}]$ $\phantom{-}e^{2} - 2e - 9$
41 $[41, 41, \frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{5}{2}w - \frac{15}{4}]$ $-e^{2} + 7$
61 $[61, 61, -\frac{3}{2}w^{3} + 3w^{2} + 11w - \frac{21}{2}]$ $\phantom{-}6$
61 $[61, 61, w^{3} - 2w^{2} - 4w + 6]$ $\phantom{-}e^{2} + 4e - 7$
79 $[79, 79, \frac{3}{4}w^{3} - \frac{5}{2}w^{2} - \frac{7}{2}w + \frac{27}{4}]$ $-2e^{2} - 4e + 14$
79 $[79, 79, \frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{5}{2}w - \frac{35}{4}]$ $-e^{2} + 1$
81 $[81, 3, -3]$ $-3e^{2} - 6e + 11$
89 $[89, 89, \frac{7}{4}w^{3} - \frac{11}{2}w^{2} - \frac{21}{2}w + \frac{119}{4}]$ $-e^{2} - 1$
89 $[89, 89, \frac{1}{4}w^{3} + \frac{3}{2}w^{2} - \frac{3}{2}w - \frac{23}{4}]$ $\phantom{-}\frac{1}{2}e^{2} + e + \frac{5}{2}$
109 $[109, 109, -\frac{1}{2}w^{3} + 3w^{2} + 2w - \frac{41}{2}]$ $-e^{2} - 2e + 13$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,-\frac{1}{2}w^{3} + 2w^{2} + 2w - \frac{15}{2}]$ $-1$
$5$ $[5,5,-\frac{1}{2}w^{3} + w^{2} + 4w - \frac{9}{2}]$ $-1$