Properties

Label 4.4.13025.1-16.1-f
Base field 4.4.13025.1
Weight $[2, 2, 2, 2]$
Level norm $16$
Level $[16, 2, 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.13025.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 12x^{2} + 3x + 29\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[16, 2, 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $18$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{2}w^{3} - 2w^{2} - 2w + \frac{15}{2}]$ $-1$
4 $[4, 2, -w^{2} + w + 8]$ $\phantom{-}1$
5 $[5, 5, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{1}{2}w - \frac{9}{4}]$ $-3$
5 $[5, 5, \frac{1}{2}w^{3} - w^{2} - 4w + \frac{9}{2}]$ $\phantom{-}1$
19 $[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{21}{4}]$ $\phantom{-}5$
19 $[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{41}{4}]$ $-1$
29 $[29, 29, w]$ $-4$
29 $[29, 29, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{1}{4}]$ $-4$
29 $[29, 29, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{9}{4}]$ $\phantom{-}0$
29 $[29, 29, -\frac{1}{2}w^{3} + w^{2} + 4w - \frac{5}{2}]$ $\phantom{-}2$
41 $[41, 41, \frac{3}{4}w^{3} - \frac{5}{2}w^{2} - \frac{7}{2}w + \frac{47}{4}]$ $-6$
41 $[41, 41, \frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{5}{2}w - \frac{15}{4}]$ $\phantom{-}8$
61 $[61, 61, -\frac{3}{2}w^{3} + 3w^{2} + 11w - \frac{21}{2}]$ $-7$
61 $[61, 61, w^{3} - 2w^{2} - 4w + 6]$ $\phantom{-}1$
79 $[79, 79, \frac{3}{4}w^{3} - \frac{5}{2}w^{2} - \frac{7}{2}w + \frac{27}{4}]$ $-2$
79 $[79, 79, \frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{5}{2}w - \frac{35}{4}]$ $-10$
81 $[81, 3, -3]$ $-13$
89 $[89, 89, \frac{7}{4}w^{3} - \frac{11}{2}w^{2} - \frac{21}{2}w + \frac{119}{4}]$ $\phantom{-}1$
89 $[89, 89, \frac{1}{4}w^{3} + \frac{3}{2}w^{2} - \frac{3}{2}w - \frac{23}{4}]$ $-3$
109 $[109, 109, -\frac{1}{2}w^{3} + 3w^{2} + 2w - \frac{41}{2}]$ $-7$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, \frac{1}{2}w^{3} - 2w^{2} - 2w + \frac{15}{2}]$ $1$
$4$ $[4, 2, -w^{2} + w + 8]$ $-1$