Properties

Label 4.4.12725.1-25.1-g
Base field 4.4.12725.1
Weight $[2, 2, 2, 2]$
Level norm $25$
Level $[25, 5, -2w^{2} + 2w + 11]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.12725.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 10x^{2} + 11x + 29\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[25, 5, -2w^{2} + 2w + 11]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $29$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
11 $[11, 11, -w - 1]$ $\phantom{-}2$
11 $[11, 11, w^{2} - 5]$ $\phantom{-}4$
11 $[11, 11, -w^{2} + 2w + 4]$ $-3$
11 $[11, 11, w - 2]$ $-3$
16 $[16, 2, 2]$ $-1$
19 $[19, 19, w^{2} - 2w - 5]$ $-7$
19 $[19, 19, -w^{2} + 6]$ $\phantom{-}8$
25 $[25, 5, -2w^{2} + 2w + 11]$ $\phantom{-}1$
29 $[29, 29, w]$ $-1$
29 $[29, 29, 2w^{2} - w - 10]$ $\phantom{-}2$
29 $[29, 29, -2w^{2} + 3w + 9]$ $-2$
29 $[29, 29, w - 1]$ $-2$
31 $[31, 31, w^{3} - 6w - 6]$ $\phantom{-}4$
31 $[31, 31, -w^{3} + 3w^{2} + 3w - 11]$ $-4$
41 $[41, 41, w^{3} - 4w^{2} - 2w + 16]$ $-6$
41 $[41, 41, w^{3} - 5w^{2} - 2w + 24]$ $-5$
59 $[59, 59, w^{3} - w^{2} - 5w - 2]$ $\phantom{-}1$
59 $[59, 59, 2w^{2} - w - 13]$ $-11$
61 $[61, 61, w^{3} - w^{2} - 6w + 3]$ $-8$
61 $[61, 61, -w^{3} + 2w^{2} + 5w - 3]$ $-5$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$25$ $[25, 5, -2w^{2} + 2w + 11]$ $-1$