/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([29, 11, -10, -2, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([19, 19, w^2 - 2*w - 5]) primes_array = [ [11, 11, -w - 1],\ [11, 11, w^2 - 5],\ [11, 11, -w^2 + 2*w + 4],\ [11, 11, w - 2],\ [16, 2, 2],\ [19, 19, w^2 - 2*w - 5],\ [19, 19, -w^2 + 6],\ [25, 5, -2*w^2 + 2*w + 11],\ [29, 29, w],\ [29, 29, 2*w^2 - w - 10],\ [29, 29, -2*w^2 + 3*w + 9],\ [29, 29, w - 1],\ [31, 31, w^3 - 6*w - 6],\ [31, 31, -w^3 + 3*w^2 + 3*w - 11],\ [41, 41, w^3 - 4*w^2 - 2*w + 16],\ [41, 41, w^3 - 5*w^2 - 2*w + 24],\ [59, 59, w^3 - w^2 - 5*w - 2],\ [59, 59, 2*w^2 - w - 13],\ [61, 61, w^3 - w^2 - 6*w + 3],\ [61, 61, -w^3 + 2*w^2 + 5*w - 3],\ [71, 71, 2*w^2 - w - 16],\ [71, 71, -w^3 + 3*w^2 + 4*w - 10],\ [71, 71, -w^3 + 7*w + 4],\ [71, 71, w^3 - 5*w^2 - 2*w + 23],\ [79, 79, -w^3 + 4*w^2 + 3*w - 16],\ [79, 79, w^3 + w^2 - 8*w - 10],\ [81, 3, -3],\ [131, 131, 4*w^2 - 5*w - 24],\ [131, 131, 4*w^2 - 3*w - 25],\ [139, 139, w^2 + w - 9],\ [139, 139, -w^3 + w^2 + 6*w - 5],\ [149, 149, w^3 - w^2 - 4*w + 2],\ [149, 149, w^3 - 2*w^2 - 3*w + 2],\ [151, 151, -w^3 + 7*w + 3],\ [151, 151, -w^3 + 3*w^2 + 4*w - 9],\ [179, 179, -w^3 - 2*w^2 + 10*w + 16],\ [179, 179, -w^3 + 3*w^2 + 3*w - 6],\ [179, 179, w^3 - 6*w - 1],\ [179, 179, w^3 - 5*w^2 - 3*w + 23],\ [191, 191, w^3 - 6*w^2 - w + 27],\ [191, 191, w^3 + 3*w^2 - 10*w - 21],\ [199, 199, -w^3 + 2*w^2 + 6*w - 4],\ [199, 199, -4*w^2 + 3*w + 22],\ [199, 199, 4*w^2 - 5*w - 21],\ [199, 199, 3*w^2 - 4*w - 12],\ [239, 239, -w^3 + w^2 + 4*w - 6],\ [239, 239, 2*w^3 - 5*w^2 - 9*w + 17],\ [239, 239, 2*w^3 - w^2 - 13*w - 5],\ [239, 239, w^3 - 8*w^2 + 2*w + 41],\ [241, 241, -w^3 + 5*w^2 + 4*w - 25],\ [241, 241, w^3 - 6*w - 8],\ [241, 241, -w^3 + 3*w^2 + 3*w - 13],\ [241, 241, w^3 - 5*w^2 + w + 19],\ [269, 269, w^2 - 2*w - 10],\ [269, 269, w^2 - 11],\ [271, 271, w^3 + 2*w^2 - 8*w - 18],\ [271, 271, 2*w^3 - 13*w - 10],\ [271, 271, 2*w^3 + w^2 - 15*w - 16],\ [271, 271, w^3 - 5*w^2 - w + 23],\ [289, 17, 2*w^2 - 11],\ [289, 17, -2*w^2 + 4*w + 9],\ [311, 311, w^3 - 4*w^2 - 3*w + 10],\ [311, 311, w^3 - 7*w^2 - w + 34],\ [331, 331, w^3 - w^2 - 7*w + 4],\ [331, 331, w^3 - 2*w^2 - 6*w + 3],\ [349, 349, w^3 + w^2 - 6*w - 12],\ [349, 349, -w^3 + 4*w^2 + w - 16],\ [361, 19, 4*w^2 - 4*w - 21],\ [379, 379, w^3 - 3*w^2 - 3*w + 15],\ [379, 379, 2*w^3 - 2*w^2 - 12*w + 1],\ [379, 379, -2*w^3 + 4*w^2 + 10*w - 11],\ [379, 379, w^3 - 6*w - 10],\ [401, 401, -2*w^3 + 7*w^2 + 8*w - 30],\ [401, 401, -w^3 + 2*w^2 + 6*w - 2],\ [419, 419, 5*w^2 - 4*w - 26],\ [419, 419, 5*w^2 - 6*w - 25],\ [421, 421, 3*w^2 - w - 20],\ [421, 421, -2*w^3 + 2*w^2 + 10*w + 3],\ [431, 431, w^2 - 3*w - 5],\ [431, 431, w^2 + w - 7],\ [449, 449, 2*w^3 - 13*w - 7],\ [449, 449, -2*w^3 + 6*w^2 + 7*w - 18],\ [461, 461, w^3 - w^2 - 8*w + 3],\ [461, 461, -w^3 + 2*w^2 + 7*w - 5],\ [491, 491, w^3 - 3*w^2 - 6*w + 15],\ [491, 491, w^3 - 9*w - 7],\ [499, 499, 4*w^2 - 6*w - 23],\ [499, 499, -4*w^2 + 2*w + 25],\ [509, 509, 2*w^3 - 3*w^2 - 11*w + 6],\ [521, 521, -w^3 + 3*w^2 + 2*w - 12],\ [521, 521, -w^3 + 4*w^2 + 2*w - 19],\ [529, 23, w^3 - 7*w^2 - w + 35],\ [529, 23, -w^3 + 3*w^2 + 4*w - 5],\ [541, 541, 2*w^3 - w^2 - 12*w - 5],\ [541, 541, w^3 - 2*w^2 - 7*w + 9],\ [569, 569, w^3 - 8*w - 2],\ [569, 569, -w^3 + 3*w^2 + 5*w - 9],\ [599, 599, -w^3 - 4*w^2 + 10*w + 25],\ [599, 599, -w^3 + 7*w^2 - 36],\ [601, 601, 5*w^2 - 6*w - 26],\ [601, 601, -2*w^3 + 8*w^2 + 6*w - 33],\ [601, 601, -2*w^3 - 2*w^2 + 16*w + 21],\ [601, 601, 5*w^2 - 4*w - 27],\ [619, 619, w^3 + 4*w^2 - 11*w - 26],\ [619, 619, w^3 - 3*w^2 - 5*w + 18],\ [641, 641, -w^3 + 3*w^2 + 6*w - 14],\ [641, 641, -w^3 + 9*w + 6],\ [659, 659, -w^3 - 4*w^2 + 10*w + 28],\ [659, 659, -w^3 + 6*w^2 - w - 27],\ [659, 659, -w^3 - 3*w^2 + 8*w + 23],\ [659, 659, -w^3 + 7*w^2 - w - 33],\ [691, 691, w^3 - w^2 - 8*w + 2],\ [691, 691, 2*w^3 - 2*w^2 - 11*w + 1],\ [701, 701, -w^3 - w^2 + 7*w + 15],\ [701, 701, -w^3 + 4*w^2 + 2*w - 20],\ [709, 709, -2*w^3 - w^2 + 15*w + 15],\ [709, 709, 2*w^3 - 7*w^2 - 7*w + 27],\ [719, 719, -w^3 - 4*w^2 + 13*w + 26],\ [719, 719, w^3 - 7*w^2 - 2*w + 34],\ [739, 739, 2*w^3 + 2*w^2 - 15*w - 24],\ [739, 739, -2*w^3 + 8*w^2 + 5*w - 35],\ [751, 751, -w^3 - 3*w^2 + 9*w + 25],\ [751, 751, -w^3 + 6*w^2 - 30],\ [761, 761, 3*w^3 - 2*w^2 - 16*w - 8],\ [761, 761, -3*w^3 + 7*w^2 + 11*w - 23],\ [769, 769, -2*w^3 + 4*w^2 + 11*w - 10],\ [769, 769, w^3 + 2*w^2 - 9*w - 12],\ [809, 809, -3*w^3 + 3*w^2 + 16*w + 4],\ [809, 809, w^3 + 5*w^2 - 12*w - 30],\ [811, 811, -w^3 - 4*w^2 + 10*w + 27],\ [811, 811, -2*w^3 + 5*w^2 + 9*w - 14],\ [811, 811, -2*w^3 + w^2 + 13*w + 2],\ [811, 811, -w^3 + 7*w^2 - w - 32],\ [821, 821, 2*w^3 - 8*w^2 - 7*w + 35],\ [821, 821, -2*w^3 - 2*w^2 + 17*w + 22],\ [829, 829, -3*w^3 + 20*w + 13],\ [829, 829, -w^3 + 7*w^2 - w - 36],\ [829, 829, w^3 + 4*w^2 - 10*w - 31],\ [829, 829, 2*w^3 - 3*w^2 - 11*w + 14],\ [859, 859, -w^3 + 7*w^2 - 3*w - 31],\ [859, 859, 7*w^2 - 9*w - 39],\ [859, 859, 7*w^2 - 5*w - 41],\ [859, 859, 3*w^3 - 4*w^2 - 17*w + 2],\ [929, 929, w^3 + 5*w^2 - 14*w - 31],\ [929, 929, -2*w^3 + 4*w^2 + 10*w - 5],\ [929, 929, w^3 - 9*w^2 + 4*w + 44],\ [929, 929, -w^3 + 8*w^2 + w - 39],\ [941, 941, -w^3 + 7*w^2 - 34],\ [941, 941, w^3 + 4*w^2 - 11*w - 28],\ [961, 31, -5*w^2 + 5*w + 28],\ [971, 971, -3*w^3 + w^2 + 19*w + 14],\ [971, 971, -3*w^3 + 8*w^2 + 12*w - 31],\ [991, 991, -w^3 - 5*w^2 + 11*w + 35],\ [991, 991, w^3 - 8*w^2 + 2*w + 40]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x^4 + 5*x^3 - 14*x^2 - 68*x + 8 K. = NumberField(heckePol) hecke_eigenvalues_array = [1/4*e^2 + 1/4*e - 11/2, -3/16*e^3 - 9/16*e^2 + 11/4*e + 17/4, e, 1/8*e^3 + 3/8*e^2 - 3/2*e - 7/2, -1/16*e^3 + 1/16*e^2 + 1/2*e - 15/4, 1, -1/4*e^3 - 1/2*e^2 + 13/4*e + 7/2, 1/16*e^3 - 1/16*e^2 - 3/2*e + 3/4, 1/4*e^2 + 5/4*e - 5/2, 1/8*e^3 + 1/8*e^2 - 11/4*e - 1, -e - 3, 1/16*e^3 - 5/16*e^2 - 7/4*e - 3/4, -1/8*e^3 + 1/8*e^2 + 4*e + 1/2, 2, -1/16*e^3 + 9/16*e^2 - 43/4, 1/4*e^3 - 1/4*e^2 - 5*e + 4, 9/16*e^3 + 27/16*e^2 - 33/4*e - 51/4, -3/16*e^3 - 17/16*e^2 + 5/4*e + 29/4, 7/16*e^3 + 5/16*e^2 - 31/4*e + 15/4, 1/16*e^3 - 9/16*e^2 - e + 27/4, 1/16*e^3 - 5/16*e^2 - 15/4*e + 33/4, 3/8*e^3 + 5/8*e^2 - 6*e - 3/2, 9/16*e^3 + 19/16*e^2 - 31/4*e - 23/4, -3/16*e^3 - 1/16*e^2 + 21/4*e - 3/4, 7/16*e^3 + 5/16*e^2 - 35/4*e - 21/4, -1/8*e^3 + 5/8*e^2 + 7/2*e - 29/2, -1/8*e^3 - 3/8*e^2 + 5/2*e - 1/2, -3/4*e^3 - 9/4*e^2 + 11*e + 17, 1/2*e^2 + 5/2*e - 9, -7/8*e^3 - 5/8*e^2 + 33/2*e + 13/2, -3/2*e^2 - 7/2*e + 15, -1/2*e^3 - 7/4*e^2 + 19/4*e + 33/2, 7/16*e^3 + 9/16*e^2 - 15/2*e - 47/4, 1/2*e^3 + 3/2*e^2 - 8*e - 8, -9/16*e^3 - 19/16*e^2 + 27/4*e - 1/4, -13/16*e^3 - 23/16*e^2 + 53/4*e + 31/4, 7/8*e^3 + 21/8*e^2 - 25/2*e - 49/2, 3/4*e^3 + 2*e^2 - 45/4*e - 11/2, -3/8*e^3 - 5/8*e^2 + 7*e + 27/2, -1/4*e^3 - e^2 + 19/4*e - 7/2, -1/16*e^3 - 3/16*e^2 + 9/4*e + 43/4, e^2 + e - 10, -3/4*e^3 - 7/4*e^2 + 25/2*e + 10, -13/16*e^3 - 31/16*e^2 + 55/4*e + 91/4, -3/8*e^3 - 7/8*e^2 + 15/4*e + 7, -7/16*e^3 - 21/16*e^2 + 27/4*e + 21/4, -3/8*e^3 - 13/8*e^2 + 9*e + 39/2, 1/4*e^3 + 3/4*e^2 - 7*e - 13, 1/2*e^3 - 3/4*e^2 - 29/4*e + 55/2, 1/4*e^3 - 7/4*e^2 - 17/2*e + 21, 7/16*e^3 - 3/16*e^2 - 41/4*e - 13/4, -1/2*e^3 + 3/4*e^2 + 37/4*e - 41/2, e^3 + 9/4*e^2 - 67/4*e - 57/2, -7/16*e^3 - 5/16*e^2 + 39/4*e + 17/4, -9/16*e^3 - 31/16*e^2 + 3*e + 61/4, 1/8*e^3 - 11/8*e^2 - 13/4*e + 27, 5/4*e^3 + 2*e^2 - 79/4*e - 45/2, -1/4*e^3 - e^2 + 11/4*e - 3/2, 1/4*e^3 - 5/4*e^2 - 5*e + 29, -1/8*e^3 + 15/8*e^2 + 31/4*e - 27, -1/16*e^3 + 13/16*e^2 + 1/4*e - 105/4, 3/8*e^3 + 3/8*e^2 - 33/4*e - 6, -1/4*e^3 + 1/4*e^2 + 5*e - 15, -1/8*e^3 - 19/8*e^2 - 1/2*e + 43/2, -1/16*e^3 + 21/16*e^2 + 11/4*e - 25/4, 5/8*e^3 + 1/8*e^2 - 49/4*e - 10, 7/16*e^3 + 29/16*e^2 - 17/4*e - 37/4, 1/8*e^3 + 13/8*e^2 + 3/4*e - 20, 7/4*e^2 - 5/4*e - 73/2, -1/4*e^3 - 2*e^2 - 1/4*e + 21/2, -1/8*e^3 + 7/8*e^2 - 1/4*e - 28, 3/16*e^3 + 17/16*e^2 + 7/4*e - 5/4, 11/16*e^3 + 49/16*e^2 - 31/4*e - 125/4, 3/16*e^3 - 3/16*e^2 - 13/2*e + 101/4, -5/16*e^3 + 17/16*e^2 + 21/4*e - 89/4, -9/8*e^3 + 1/8*e^2 + 22*e - 11/2, 1/8*e^3 + 9/8*e^2 - 7/4*e - 21, 13/16*e^3 + 31/16*e^2 - 51/4*e - 71/4, 9/8*e^3 + 3/8*e^2 - 45/2*e - 15/2, -1/16*e^3 + 5/16*e^2 - 5/4*e - 57/4, 3/8*e^3 + 13/8*e^2 - 2*e - 73/2, -3/4*e^3 - 3/4*e^2 + 33/2*e - 3, -11/16*e^3 + 27/16*e^2 + 21/2*e - 165/4, -17/16*e^3 - 15/16*e^2 + 47/2*e + 41/4, -5/16*e^3 + 9/16*e^2 + 11/4*e - 117/4, 5/8*e^3 + 15/8*e^2 - 5/2*e - 35/2, -1/4*e^3 - 11/4*e^2 + 7*e + 33, 11/8*e^3 + 11/8*e^2 - 105/4*e - 14, 23/16*e^3 + 25/16*e^2 - 49/2*e - 75/4, 1/16*e^3 + 27/16*e^2 + 17/4*e - 107/4, 7/16*e^3 + 45/16*e^2 - 5/4*e - 93/4, 3/8*e^3 + 35/8*e^2 - 5/4*e - 37, -3/8*e^3 + 1/8*e^2 + 47/4*e + 16, -3/16*e^3 - 5/16*e^2 + 6*e - 49/4, -5/4*e^3 - 5/2*e^2 + 61/4*e + 21/2, -19/16*e^3 - 29/16*e^2 + 41/2*e + 103/4, 2*e^2 + e - 44, 19/16*e^3 + 49/16*e^2 - 93/4*e - 101/4, 5/16*e^3 + 23/16*e^2 - 15/4*e - 131/4, -1/2*e^3 + 2*e^2 + 15/2*e - 46, -11/16*e^3 - 45/16*e^2 + 10*e + 87/4, -5/16*e^3 - 7/16*e^2 + 19/4*e + 7/4, -1/4*e^3 - 3/4*e^2 + 11*e + 24, -1/8*e^3 + 5/8*e^2 + 15/2*e - 29/2, 27/16*e^3 + 65/16*e^2 - 91/4*e - 105/4, 15/16*e^3 + 9/16*e^2 - 21*e - 71/4, -11/16*e^3 + 3/16*e^2 + 11*e - 117/4, 5/8*e^3 + 7/8*e^2 - 35/2*e - 35/2, 2*e^3 + 2*e^2 - 39*e - 26, -13/8*e^3 - 23/8*e^2 + 53/2*e + 67/2, -21/16*e^3 - 55/16*e^2 + 87/4*e + 179/4, 7/8*e^3 + 21/8*e^2 - 23/2*e - 53/2, -1/8*e^3 + 21/8*e^2 + 19/2*e - 57/2, 11/8*e^3 + 41/8*e^2 - 35/2*e - 101/2, -3/2*e^3 - 9/2*e^2 + 22*e + 36, 3/16*e^3 - 11/16*e^2 - 2*e + 109/4, 15/16*e^3 + 81/16*e^2 - 27/2*e - 171/4, -3/2*e^3 - 5/2*e^2 + 23*e + 18, 1/4*e^3 - 1/4*e^2 - 12*e - 1, -3/8*e^3 + 7/8*e^2 + 21/2*e - 7/2, 9/8*e^3 + 11/8*e^2 - 31/2*e - 11/2, 7/8*e^3 + 9/8*e^2 - 15*e - 83/2, e^3 + e^2 - 11*e + 4, -13/8*e^3 - 31/8*e^2 + 45/2*e + 83/2, 1/16*e^3 + 7/16*e^2 + 6*e + 47/4, -e^3 - 3*e^2 + 20*e + 31, 3/8*e^3 + 15/8*e^2 - 7/4*e - 12, -5/8*e^3 + 7/8*e^2 + 29/4*e - 48, 17/16*e^3 + 51/16*e^2 - 49/4*e - 135/4, 23/16*e^3 + 29/16*e^2 - 97/4*e - 25/4, e^3 - 3/4*e^2 - 71/4*e + 25/2, -1/4*e^3 - 11/4*e^2 + 9*e + 33, -9/8*e^3 - 13/8*e^2 + 65/4*e - 9, -5/16*e^3 - 27/16*e^2 + 15/2*e + 29/4, -25/16*e^3 + 1/16*e^2 + 26*e - 139/4, -1/2*e^3 - 7/4*e^2 + 51/4*e + 69/2, -21/16*e^3 - 19/16*e^2 + 26*e + 5/4, 31/16*e^3 + 89/16*e^2 - 32*e - 175/4, -5/8*e^3 - 19/8*e^2 + 9*e + 75/2, -9/8*e^3 - 7/8*e^2 + 18*e - 7/2, 3/2*e^3 + 9/4*e^2 - 121/4*e - 49/2, 3/8*e^3 - 7/8*e^2 - 11/2*e + 43/2, -3/16*e^3 - 9/16*e^2 + 31/4*e - 71/4, -3/8*e^3 - 11/8*e^2 + 37/4*e + 25, 5/16*e^3 - 29/16*e^2 + 227/4, -1/2*e^3 + 7/2*e^2 + 19*e - 50, 1/16*e^3 - 13/16*e^2 + 11/4*e + 73/4, -13/16*e^3 + 29/16*e^2 + 41/2*e - 91/4, 5/16*e^3 - 13/16*e^2 - 12*e + 95/4, 3/4*e^3 + 3*e^2 - 9/4*e - 81/2, -13/8*e^3 - 27/8*e^2 + 17*e + 29/2, -3/2*e^3 - 3/4*e^2 + 135/4*e - 1/2, -7/4*e^3 - 1/2*e^2 + 127/4*e - 7/2, -e^3 - 3/4*e^2 + 57/4*e - 11/2] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([19, 19, w^2 - 2*w - 5])] = -1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]