Properties

Label 4.4.12725.1-1.1-b
Base field 4.4.12725.1
Weight $[2, 2, 2, 2]$
Level norm $1$
Level $[1, 1, 1]$
Dimension $3$
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field 4.4.12725.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 10x^{2} + 11x + 29\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[1, 1, 1]$
Dimension: $3$
CM: no
Base change: yes
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{3} + 4x^{2} - 10x - 24\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, -w - 1]$ $-\frac{1}{2}e^{2} - e + 6$
11 $[11, 11, w^{2} - 5]$ $\phantom{-}e$
11 $[11, 11, -w^{2} + 2w + 4]$ $\phantom{-}e$
11 $[11, 11, w - 2]$ $-\frac{1}{2}e^{2} - e + 6$
16 $[16, 2, 2]$ $\phantom{-}e + 5$
19 $[19, 19, w^{2} - 2w - 5]$ $\phantom{-}\frac{1}{2}e^{2} + e - 4$
19 $[19, 19, -w^{2} + 6]$ $\phantom{-}\frac{1}{2}e^{2} + e - 4$
25 $[25, 5, -2w^{2} + 2w + 11]$ $\phantom{-}\frac{1}{2}e^{2} + e + 2$
29 $[29, 29, w]$ $-e - 3$
29 $[29, 29, 2w^{2} - w - 10]$ $-e - 3$
29 $[29, 29, -2w^{2} + 3w + 9]$ $-e - 3$
29 $[29, 29, w - 1]$ $-e - 3$
31 $[31, 31, w^{3} - 6w - 6]$ $\phantom{-}2$
31 $[31, 31, -w^{3} + 3w^{2} + 3w - 11]$ $\phantom{-}2$
41 $[41, 41, w^{3} - 4w^{2} - 2w + 16]$ $-\frac{1}{2}e^{2} - 2e + 3$
41 $[41, 41, w^{3} - 5w^{2} - 2w + 24]$ $-\frac{1}{2}e^{2} - 2e + 3$
59 $[59, 59, w^{3} - w^{2} - 5w - 2]$ $-2e - 6$
59 $[59, 59, 2w^{2} - w - 13]$ $-2e - 6$
61 $[61, 61, w^{3} - w^{2} - 6w + 3]$ $\phantom{-}\frac{1}{2}e^{2} + e - 7$
61 $[61, 61, -w^{3} + 2w^{2} + 5w - 3]$ $\phantom{-}\frac{1}{2}e^{2} + e - 7$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).