# Properties

 Label 4.4.11661.1-3.1-b Base field 4.4.11661.1 Weight $[2, 2, 2, 2]$ Level norm $3$ Level $[3, 3, w]$ Dimension $1$ CM no Base change no

# Related objects

## Base field 4.4.11661.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 4x^{2} + 5x + 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[3, 3, w]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $2$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}1$
3 $[3, 3, w - 2]$ $-2$
3 $[3, 3, w - 1]$ $-2$
16 $[16, 2, 2]$ $-1$
23 $[23, 23, -w^{3} + 4w + 1]$ $\phantom{-}0$
25 $[25, 5, w^{3} - 2w^{2} - 2w + 2]$ $-4$
25 $[25, 5, w^{3} - w^{2} - 3w + 1]$ $-4$
29 $[29, 29, w^{3} - 2w^{2} - 4w + 4]$ $-6$
29 $[29, 29, w^{3} - w^{2} - 5w + 1]$ $\phantom{-}0$
43 $[43, 43, -w^{3} + 2w^{2} + 3w - 2]$ $-4$
43 $[43, 43, w^{3} - w^{2} - 4w + 2]$ $\phantom{-}8$
61 $[61, 61, -w^{2} + 2w + 4]$ $\phantom{-}2$
61 $[61, 61, w^{2} - 5]$ $-10$
79 $[79, 79, 3w^{3} - 7w^{2} - 8w + 16]$ $\phantom{-}2$
79 $[79, 79, -w^{3} + w^{2} + 6w - 4]$ $-16$
101 $[101, 101, -w^{3} + 3w^{2} + w - 7]$ $\phantom{-}6$
101 $[101, 101, w^{3} - 4w - 4]$ $\phantom{-}6$
103 $[103, 103, 2w^{3} - w^{2} - 8w - 1]$ $\phantom{-}8$
103 $[103, 103, 2w^{3} - 5w^{2} - 4w + 8]$ $-16$
107 $[107, 107, 2w^{2} - 3w - 4]$ $-12$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w]$ $-1$