# Properties

 Label 4.4.11661.1-23.1-g Base field 4.4.11661.1 Weight $[2, 2, 2, 2]$ Level norm $23$ Level $[23, 23, -w^{3} + 4w + 1]$ Dimension $8$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.11661.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 4x^{2} + 5x + 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[23, 23, -w^{3} + 4w + 1]$ Dimension: $8$ CM: no Base change: no Newspace dimension: $30$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{8} - 14x^{6} + 32x^{4} - 11x^{2} + 1$$
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}e$
3 $[3, 3, w - 2]$ $-\frac{1}{3}e^{7} + \frac{13}{3}e^{5} - \frac{19}{3}e^{3} - \frac{11}{3}e$
3 $[3, 3, w - 1]$ $\phantom{-}\frac{19}{3}e^{7} - \frac{262}{3}e^{5} + \frac{553}{3}e^{3} - \frac{94}{3}e$
16 $[16, 2, 2]$ $-\frac{16}{3}e^{6} + \frac{220}{3}e^{4} - \frac{460}{3}e^{2} + \frac{88}{3}$
23 $[23, 23, -w^{3} + 4w + 1]$ $-1$
25 $[25, 5, w^{3} - 2w^{2} - 2w + 2]$ $-\frac{13}{3}e^{7} + \frac{178}{3}e^{5} - \frac{361}{3}e^{3} + \frac{28}{3}e$
25 $[25, 5, w^{3} - w^{2} - 3w + 1]$ $-\frac{8}{3}e^{7} + \frac{110}{3}e^{5} - \frac{230}{3}e^{3} + \frac{41}{3}e$
29 $[29, 29, w^{3} - 2w^{2} - 4w + 4]$ $\phantom{-}\frac{5}{3}e^{7} - \frac{71}{3}e^{5} + \frac{173}{3}e^{3} - \frac{74}{3}e$
29 $[29, 29, w^{3} - w^{2} - 5w + 1]$ $\phantom{-}\frac{10}{3}e^{7} - \frac{139}{3}e^{5} + \frac{304}{3}e^{3} - \frac{61}{3}e$
43 $[43, 43, -w^{3} + 2w^{2} + 3w - 2]$ $-\frac{4}{3}e^{6} + \frac{58}{3}e^{4} - \frac{148}{3}e^{2} + \frac{52}{3}$
43 $[43, 43, w^{3} - w^{2} - 4w + 2]$ $\phantom{-}12e^{6} - 166e^{4} + 356e^{2} - 62$
61 $[61, 61, -w^{2} + 2w + 4]$ $-\frac{59}{3}e^{7} + \frac{815}{3}e^{5} - \frac{1736}{3}e^{3} + \frac{326}{3}e$
61 $[61, 61, w^{2} - 5]$ $\phantom{-}\frac{5}{3}e^{7} - \frac{68}{3}e^{5} + \frac{134}{3}e^{3} - \frac{20}{3}e$
79 $[79, 79, 3w^{3} - 7w^{2} - 8w + 16]$ $\phantom{-}\frac{52}{3}e^{7} - \frac{718}{3}e^{5} + \frac{1525}{3}e^{3} - \frac{277}{3}e$
79 $[79, 79, -w^{3} + w^{2} + 6w - 4]$ $-12e^{7} + 165e^{5} - 343e^{3} + 51e$
101 $[101, 101, -w^{3} + 3w^{2} + w - 7]$ $\phantom{-}\frac{91}{3}e^{7} - \frac{1258}{3}e^{5} + \frac{2689}{3}e^{3} - \frac{517}{3}e$
101 $[101, 101, w^{3} - 4w - 4]$ $-\frac{23}{3}e^{7} + \frac{314}{3}e^{5} - \frac{629}{3}e^{3} + \frac{65}{3}e$
103 $[103, 103, 2w^{3} - w^{2} - 8w - 1]$ $-\frac{11}{3}e^{6} + \frac{155}{3}e^{4} - \frac{365}{3}e^{2} + \frac{110}{3}$
103 $[103, 103, 2w^{3} - 5w^{2} - 4w + 8]$ $-\frac{1}{3}e^{6} + \frac{10}{3}e^{4} + \frac{20}{3}e^{2} - \frac{35}{3}$
107 $[107, 107, 2w^{2} - 3w - 4]$ $\phantom{-}\frac{14}{3}e^{6} - \frac{191}{3}e^{4} + \frac{380}{3}e^{2} - \frac{38}{3}$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$23$ $[23, 23, -w^{3} + 4w + 1]$ $1$