# Properties

 Label 4.4.11661.1-23.1-d Base field 4.4.11661.1 Weight $[2, 2, 2, 2]$ Level norm $23$ Level $[23, 23, -w^{3} + 4w + 1]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.11661.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 4x^{2} + 5x + 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[23, 23, -w^{3} + 4w + 1]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $30$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - 8$$
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}e$
3 $[3, 3, w - 2]$ $\phantom{-}e$
3 $[3, 3, w - 1]$ $\phantom{-}\frac{1}{2}e$
16 $[16, 2, 2]$ $-1$
23 $[23, 23, -w^{3} + 4w + 1]$ $-1$
25 $[25, 5, w^{3} - 2w^{2} - 2w + 2]$ $\phantom{-}2e$
25 $[25, 5, w^{3} - w^{2} - 3w + 1]$ $-\frac{3}{2}e$
29 $[29, 29, w^{3} - 2w^{2} - 4w + 4]$ $-e$
29 $[29, 29, w^{3} - w^{2} - 5w + 1]$ $\phantom{-}e$
43 $[43, 43, -w^{3} + 2w^{2} + 3w - 2]$ $-6$
43 $[43, 43, w^{3} - w^{2} - 4w + 2]$ $\phantom{-}0$
61 $[61, 61, -w^{2} + 2w + 4]$ $-e$
61 $[61, 61, w^{2} - 5]$ $\phantom{-}\frac{9}{2}e$
79 $[79, 79, 3w^{3} - 7w^{2} - 8w + 16]$ $-\frac{5}{2}e$
79 $[79, 79, -w^{3} + w^{2} + 6w - 4]$ $-4e$
101 $[101, 101, -w^{3} + 3w^{2} + w - 7]$ $-\frac{11}{2}e$
101 $[101, 101, w^{3} - 4w - 4]$ $\phantom{-}3e$
103 $[103, 103, 2w^{3} - w^{2} - 8w - 1]$ $\phantom{-}16$
103 $[103, 103, 2w^{3} - 5w^{2} - 4w + 8]$ $\phantom{-}0$
107 $[107, 107, 2w^{2} - 3w - 4]$ $\phantom{-}12$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$23$ $[23, 23, -w^{3} + 4w + 1]$ $1$