Properties

Label 4.4.11324.1-16.1-a
Base field 4.4.11324.1
Weight $[2, 2, 2, 2]$
Level norm $16$
Level $[16, 2, 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.11324.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 5x^{2} + 4x + 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[16, 2, 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $5$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
4 $[4, 2, -w^{3} + 4w + 1]$ $-1$
5 $[5, 5, w + 1]$ $-1$
13 $[13, 13, -w^{2} + 3]$ $\phantom{-}1$
17 $[17, 17, -w^{3} + w^{2} + 3w - 1]$ $-3$
19 $[19, 19, -w^{3} + 3w - 1]$ $-4$
23 $[23, 23, -w + 3]$ $-6$
31 $[31, 31, -w^{2} - 2w + 1]$ $\phantom{-}2$
41 $[41, 41, w^{3} + w^{2} - 5w - 3]$ $\phantom{-}7$
43 $[43, 43, 2w - 1]$ $-6$
53 $[53, 53, -w - 3]$ $-3$
53 $[53, 53, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}13$
61 $[61, 61, w^{3} - 3w - 5]$ $\phantom{-}11$
67 $[67, 67, w^{3} + w^{2} - 5w - 1]$ $\phantom{-}2$
81 $[81, 3, -3]$ $-5$
83 $[83, 83, -w^{3} + 5w - 3]$ $\phantom{-}18$
89 $[89, 89, w^{2} + 1]$ $-14$
97 $[97, 97, w^{3} - w^{2} - 5w + 1]$ $-11$
97 $[97, 97, 3w^{3} - 5w^{2} - 14w + 21]$ $-5$
97 $[97, 97, w^{3} - 3w - 3]$ $\phantom{-}13$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$
$4$ $[4, 2, -w^{3} + 4w + 1]$ $1$