Properties

Label 4.4.11025.1-20.2-h
Base field \(\Q(\sqrt{5}, \sqrt{21})\)
Weight $[2, 2, 2, 2]$
Level norm $20$
Level $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$
Dimension $3$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{5}, \sqrt{21})\)

Generator \(w\), with minimal polynomial \(x^{4} - 13x^{2} + 16\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$
Dimension: $3$
CM: no
Base change: no
Newspace dimension: $14$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{3} + 3x^{2} - 5x - 13\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{11}{4}w + 5]$ $\phantom{-}e$
4 $[4, 2, \frac{1}{8}w^{3} - \frac{1}{2}w^{2} - \frac{5}{8}w + \frac{3}{2}]$ $\phantom{-}1$
5 $[5, 5, -\frac{3}{8}w^{3} + \frac{35}{8}w - \frac{1}{2}]$ $-e - 1$
5 $[5, 5, \frac{3}{8}w^{3} - \frac{35}{8}w - \frac{1}{2}]$ $-1$
9 $[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ $-e^{2} - e + 4$
41 $[41, 41, \frac{1}{8}w^{3} - \frac{1}{8}w + \frac{3}{2}]$ $\phantom{-}e^{2} - 13$
41 $[41, 41, \frac{3}{8}w^{3} - \frac{35}{8}w + \frac{3}{2}]$ $\phantom{-}e^{2} - 13$
41 $[41, 41, \frac{3}{8}w^{3} - \frac{35}{8}w - \frac{3}{2}]$ $\phantom{-}2e + 2$
41 $[41, 41, -\frac{1}{8}w^{3} + \frac{1}{8}w + \frac{3}{2}]$ $\phantom{-}e^{2} - e - 8$
49 $[49, 7, \frac{1}{8}w^{3} - \frac{17}{8}w + \frac{7}{2}]$ $\phantom{-}2e^{2} + 2e - 10$
59 $[59, 59, \frac{5}{8}w^{3} - \frac{53}{8}w - \frac{5}{2}]$ $-6$
59 $[59, 59, -\frac{7}{8}w^{3} + \frac{3}{2}w^{2} + \frac{83}{8}w - \frac{35}{2}]$ $-e^{2} + 2e + 9$
59 $[59, 59, -\frac{3}{4}w^{3} + \frac{3}{2}w^{2} + \frac{33}{4}w - 16]$ $-3e^{2} - e + 20$
59 $[59, 59, \frac{5}{8}w^{3} - \frac{53}{8}w + \frac{5}{2}]$ $\phantom{-}2e^{2} + 2e - 12$
79 $[79, 79, \frac{3}{8}w^{3} - w^{2} - \frac{35}{8}w + \frac{21}{2}]$ $\phantom{-}5e + 1$
79 $[79, 79, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + 3w - 5]$ $\phantom{-}e^{2} + 2e - 9$
79 $[79, 79, \frac{7}{8}w^{3} - \frac{79}{8}w - \frac{1}{2}]$ $-3e^{2} - 4e + 13$
79 $[79, 79, -\frac{3}{8}w^{3} - w^{2} + \frac{35}{8}w + \frac{21}{2}]$ $\phantom{-}4e^{2} + e - 25$
89 $[89, 89, \frac{1}{8}w^{3} - \frac{1}{8}w - \frac{5}{2}]$ $-e^{2} - 4e + 9$
89 $[89, 89, \frac{3}{8}w^{3} - \frac{35}{8}w + \frac{5}{2}]$ $-4e^{2} - 2e + 20$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,\frac{1}{8}w^{3} + \frac{1}{2}w^{2} - \frac{5}{8}w - \frac{3}{2}]$ $-1$
$5$ $[5,5,-\frac{1}{8}w^{3} + \frac{1}{8}w - \frac{1}{2}]$ $1$