Properties

Label 4.4.11025.1-20.2-f
Base field \(\Q(\sqrt{5}, \sqrt{21})\)
Weight $[2, 2, 2, 2]$
Level norm $20$
Level $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{5}, \sqrt{21})\)

Generator \(w\), with minimal polynomial \(x^{4} - 13x^{2} + 16\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $14$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} + 2x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{11}{4}w + 5]$ $\phantom{-}e$
4 $[4, 2, \frac{1}{8}w^{3} - \frac{1}{2}w^{2} - \frac{5}{8}w + \frac{3}{2}]$ $-1$
5 $[5, 5, -\frac{3}{8}w^{3} + \frac{35}{8}w - \frac{1}{2}]$ $\phantom{-}e + 3$
5 $[5, 5, \frac{3}{8}w^{3} - \frac{35}{8}w - \frac{1}{2}]$ $-1$
9 $[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ $-3e - 3$
41 $[41, 41, \frac{1}{8}w^{3} - \frac{1}{8}w + \frac{3}{2}]$ $-2e + 2$
41 $[41, 41, \frac{3}{8}w^{3} - \frac{35}{8}w + \frac{3}{2}]$ $-2e - 2$
41 $[41, 41, \frac{3}{8}w^{3} - \frac{35}{8}w - \frac{3}{2}]$ $-2e$
41 $[41, 41, -\frac{1}{8}w^{3} + \frac{1}{8}w + \frac{3}{2}]$ $\phantom{-}3e - 5$
49 $[49, 7, \frac{1}{8}w^{3} - \frac{17}{8}w + \frac{7}{2}]$ $\phantom{-}6e + 4$
59 $[59, 59, \frac{5}{8}w^{3} - \frac{53}{8}w - \frac{5}{2}]$ $-2e + 2$
59 $[59, 59, -\frac{7}{8}w^{3} + \frac{3}{2}w^{2} + \frac{83}{8}w - \frac{35}{2}]$ $\phantom{-}2e - 4$
59 $[59, 59, -\frac{3}{4}w^{3} + \frac{3}{2}w^{2} + \frac{33}{4}w - 16]$ $\phantom{-}e - 5$
59 $[59, 59, \frac{5}{8}w^{3} - \frac{53}{8}w + \frac{5}{2}]$ $\phantom{-}4$
79 $[79, 79, \frac{3}{8}w^{3} - w^{2} - \frac{35}{8}w + \frac{21}{2}]$ $\phantom{-}e + 5$
79 $[79, 79, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + 3w - 5]$ $-8e - 10$
79 $[79, 79, \frac{7}{8}w^{3} - \frac{79}{8}w - \frac{1}{2}]$ $\phantom{-}6e + 4$
79 $[79, 79, -\frac{3}{8}w^{3} - w^{2} + \frac{35}{8}w + \frac{21}{2}]$ $\phantom{-}e + 5$
89 $[89, 89, \frac{1}{8}w^{3} - \frac{1}{8}w - \frac{5}{2}]$ $\phantom{-}2e + 2$
89 $[89, 89, \frac{3}{8}w^{3} - \frac{35}{8}w + \frac{5}{2}]$ $-2e + 12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,\frac{1}{8}w^{3} + \frac{1}{2}w^{2} - \frac{5}{8}w - \frac{3}{2}]$ $1$
$5$ $[5,5,-\frac{1}{8}w^{3} + \frac{1}{8}w - \frac{1}{2}]$ $1$