Properties

 Label 4.4.11025.1-20.1-g Base field $$\Q(\sqrt{5}, \sqrt{21})$$ Weight $[2, 2, 2, 2]$ Level norm $20$ Level $[20, 10, -w - 2]$ Dimension $3$ CM no Base change no

Related objects

• L-function not available

Base field $$\Q(\sqrt{5}, \sqrt{21})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 13x^{2} + 16$$; narrow class number $$2$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2, 2]$ Level: $[20, 10, -w - 2]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $14$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} + 3x^{2} - 5x - 13$$
Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{11}{4}w + 5]$ $\phantom{-}1$
4 $[4, 2, \frac{1}{8}w^{3} - \frac{1}{2}w^{2} - \frac{5}{8}w + \frac{3}{2}]$ $\phantom{-}e$
5 $[5, 5, -\frac{3}{8}w^{3} + \frac{35}{8}w - \frac{1}{2}]$ $\phantom{-}1$
5 $[5, 5, \frac{3}{8}w^{3} - \frac{35}{8}w - \frac{1}{2}]$ $\phantom{-}e + 1$
9 $[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ $-e^{2} - e + 4$
41 $[41, 41, \frac{1}{8}w^{3} - \frac{1}{8}w + \frac{3}{2}]$ $-e^{2} + 13$
41 $[41, 41, \frac{3}{8}w^{3} - \frac{35}{8}w + \frac{3}{2}]$ $-e^{2} + 13$
41 $[41, 41, \frac{3}{8}w^{3} - \frac{35}{8}w - \frac{3}{2}]$ $-e^{2} + e + 8$
41 $[41, 41, -\frac{1}{8}w^{3} + \frac{1}{8}w + \frac{3}{2}]$ $-2e - 2$
49 $[49, 7, \frac{1}{8}w^{3} - \frac{17}{8}w + \frac{7}{2}]$ $\phantom{-}2e^{2} + 2e - 10$
59 $[59, 59, \frac{5}{8}w^{3} - \frac{53}{8}w - \frac{5}{2}]$ $\phantom{-}3e^{2} + e - 20$
59 $[59, 59, -\frac{7}{8}w^{3} + \frac{3}{2}w^{2} + \frac{83}{8}w - \frac{35}{2}]$ $-2e^{2} - 2e + 12$
59 $[59, 59, -\frac{3}{4}w^{3} + \frac{3}{2}w^{2} + \frac{33}{4}w - 16]$ $\phantom{-}6$
59 $[59, 59, \frac{5}{8}w^{3} - \frac{53}{8}w + \frac{5}{2}]$ $\phantom{-}e^{2} - 2e - 9$
79 $[79, 79, \frac{3}{8}w^{3} - w^{2} - \frac{35}{8}w + \frac{21}{2}]$ $\phantom{-}e^{2} + 2e - 9$
79 $[79, 79, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + 3w - 5]$ $\phantom{-}5e + 1$
79 $[79, 79, \frac{7}{8}w^{3} - \frac{79}{8}w - \frac{1}{2}]$ $\phantom{-}4e^{2} + e - 25$
79 $[79, 79, -\frac{3}{8}w^{3} - w^{2} + \frac{35}{8}w + \frac{21}{2}]$ $-3e^{2} - 4e + 13$
89 $[89, 89, \frac{1}{8}w^{3} - \frac{1}{8}w - \frac{5}{2}]$ $-3e^{2} - 2e + 13$
89 $[89, 89, \frac{3}{8}w^{3} - \frac{35}{8}w + \frac{5}{2}]$ $-5e^{2} - 5e + 24$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,\frac{1}{4}w^{3}-\frac{1}{2}w^{2}-\frac{11}{4}w+5]$ $-1$
$5$ $[5,5,-\frac{3}{8}w^{3}+\frac{35}{8}w-\frac{1}{2}]$ $-1$